Expectation Values|期望值
Definition|定义
Expectation of a random variable , denoted by or , is the long-run average value of repetitions of the experiment it represents. It’s also known as the mean.
随机变量的期望,记作或,是该实验重复多次后得到的平均值。期望也称为均值。
Important Properties|重要性质
-
Linearity of Expectation|期望的线性性质:
- This holds for any real numbers and , and random variables and .
这对任意实数和以及随机变量和都成立。
-
Expectation of a Constant|常数的期望:
- where is a constant.
如果是常数,那么。
- where is a constant.
-
Non-negativity|非负性:
- If almost surely, then .
如果几乎肯定非负,那么。
- If almost surely, then .
-
Law of the Unconscious Statistician|无意识统计学家法则:
- If is a random variable and is a function, then is not necessarily . However, , where is the probability density function of .
如果是随机变量,是一个函数,那么不一定等于。然而,,其中是的概率密度函数。
- If is a random variable and is a function, then is not necessarily . However, , where is the probability density function of .
Common Formulas|常用公式
-
Discrete Random Variables|离散随机变量:
-
For a discrete random variable with possible values and corresponding probabilities :
对于一个具有可能取值以及相应概率的离散随机变量:
-
-
Continuous Random Variables|连续随机变量:
-
For a continuous random variable with probability density function :
对于具有概率密度函数的连续随机变量:
-
-
Expectation of the Sum|和的期望:
-
For any two random variables and :
对于任意两个随机变量和:
-
-
Higher Moments|高阶矩:
- The -th moment of a random variable about the origin is given by:
A particularly important case is the second moment (variance), which measures the dispersion of around its mean.
随机变量关于原点的第阶矩为: 特别重要的一个例子是二阶矩(方差),它衡量了围绕其均值的分散程度。
- The -th moment of a random variable about the origin is given by:
A particularly important case is the second moment (variance), which measures the dispersion of around its mean.
-
Covariance|协方差:
-
For two random variables and , the covariance is defined as:
It measures the joint variability of and .
对于两个随机变量和,协方差定义为:
它衡量了和的联合变化。
-
-
Variance|方差:
-
The variance of a random variable , denoted by , is given by:
It measures the spread of ‘s values around the mean.
随机变量的方差,记作,定义为:
它衡量了的取值围绕均值的分散程度。
-
Calculation Techniques|计算技巧
-
Using Symmetry|利用对称性:
- If the distribution of is symmetric about , then .
如果的分布关于对称,那么。
- If the distribution of is symmetric about , then .
-
Indicator Variables|指示变量:
- If is an indicator variable for event , then .
如果是事件的指示变量,那么。
- If is an indicator variable for event , then .
-
Transformation|变换:
- For , use linearity:
对于$\mathbf{Y} = a\mathbf{X} + b
$,利用线性性质:
$$
\mathbb{E}[\mathbf{Y}] = a\mathbb{E}[\mathbf{X}] + b
$$
4. Expected Value of Geometric Distribution|几何分布的期望:
-
If :
如果:
-
Moment Generating Functions|矩生成函数:
- The moment generating function of a random variable is defined as . The -th moment of can be obtained by differentiating times and evaluating at .
随机变量的矩生成函数定义为。的第阶矩可以通过对求次导数并在处进行求值得到。
- The moment generating function of a random variable is defined as . The -th moment of can be obtained by differentiating times and evaluating at .
-
Expectation of Product of Independent Random Variables|独立随机变量乘积的期望:
-
If and are independent, then:
如果和是独立的,那么:
-