Expectation Values|期望值

Definition|定义

Expectation of a random variable , denoted by or , is the long-run average value of repetitions of the experiment it represents. It’s also known as the mean.
随机变量期望,记作,是该实验重复多次后得到的平均值。期望也称为均值

Important Properties|重要性质

  1. Linearity of Expectation|期望的线性性质:

    • This holds for any real numbers and , and random variables and .
      这对任意实数以及随机变量都成立。
  2. Expectation of a Constant|常数的期望:

    • where is a constant.
      如果是常数,那么
  3. Non-negativity|非负性:

    • If almost surely, then .
      如果几乎肯定非负,那么
  4. Law of the Unconscious Statistician|无意识统计学家法则:

    • If is a random variable and is a function, then is not necessarily . However, , where is the probability density function of .
      如果是随机变量,是一个函数,那么不一定等于。然而,,其中的概率密度函数。

Common Formulas|常用公式

  1. Discrete Random Variables|离散随机变量:

    • For a discrete random variable with possible values and corresponding probabilities :

      对于一个具有可能取值以及相应概率的离散随机变量

  2. Continuous Random Variables|连续随机变量:

    • For a continuous random variable with probability density function :

      对于具有概率密度函数的连续随机变量

  3. Expectation of the Sum|和的期望:

    • For any two random variables and :

      对于任意两个随机变量

  4. Higher Moments|高阶矩:

    • The -th moment of a random variable about the origin is given by: A particularly important case is the second moment (variance), which measures the dispersion of around its mean.
      随机变量关于原点的第阶矩为: 特别重要的一个例子是二阶矩(方差),它衡量了围绕其均值的分散程度。
  5. Covariance|协方差:

    • For two random variables and , the covariance is defined as:

      It measures the joint variability of and .

      对于两个随机变量,协方差定义为:

      它衡量了的联合变化。

  6. Variance|方差:

    • The variance of a random variable , denoted by , is given by:

      It measures the spread of ‘s values around the mean.

      随机变量的方差,记作,定义为:

      它衡量了的取值围绕均值的分散程度。

Calculation Techniques|计算技巧

  1. Using Symmetry|利用对称性:

    • If the distribution of is symmetric about , then .
      如果的分布关于对称,那么
  2. Indicator Variables|指示变量:

    • If is an indicator variable for event , then .
      如果是事件的指示变量,那么
  3. Transformation|变换:

    • For , use linearity:
 对于$\mathbf{Y} = a\mathbf{X} + b

$,利用线性性质:

 $$
 \mathbb{E}[\mathbf{Y}] = a\mathbb{E}[\mathbf{X}] + b
 $$

4. Expected Value of Geometric Distribution|几何分布的期望:

  • If :

    如果

  1. Moment Generating Functions|矩生成函数:

    • The moment generating function of a random variable is defined as . The -th moment of can be obtained by differentiating times and evaluating at .
      随机变量的矩生成函数定义为的第阶矩可以通过对次导数并在处进行求值得到。
  2. Expectation of Product of Independent Random Variables|独立随机变量乘积的期望:

    • If and are independent, then:

      如果是独立的,那么: