拉普拉斯变换 Laplace Transform
定义 Definitions
拉普拉斯变换 Laplace Transform
给定一个函数 ,其拉普拉斯变换定义为
其中 是复数变量。
Given a function , its Laplace transform is defined as
where is a complex variable.
拉普拉斯逆变换 Inverse Laplace Transform
已知 是 的拉普拉斯变换,则 的拉普拉斯逆变换定义为
其中 是使得积分路径位于 的奇点右侧的实数。
Given as the Laplace transform of , the inverse Laplace transform is defined as
where is a real number such that the path of integration is to the right of all singularities of .
性质 Properties
线性 Linearity
拉普拉斯变换是线性的,即
The Laplace transform is linear, i.e.,
平移定理 Shift Theorem
如果 的拉普拉斯变换是 ,则
If the Laplace transform of is , then
导数 Derivative
如果 的拉普拉斯变换是 ,则
If the Laplace transform of is , then
证明 Proof
拉普拉斯变换的导数性质 Proof of Derivative Property of Laplace Transform
利用拉普拉斯变换解微分方程 Solving Differential Equations Using Laplace Transform
例子 Example: 热方程 Heat Equation
考虑如下热方程 Consider the heat equation:
其中 是热扩散系数 where is the thermal diffusivity.
初始条件 Initial Condition:
边界条件 Boundary Conditions:
-
对时间变量 进行拉普拉斯变换 Taking the Laplace transform with respect to :
sU(x, s) - u(x, 0) = \alpha \frac{\partial^2 U}{\partial x^2}
代入初始条件 Substituting the initial condition $u(x, 0) = f(x)$:sU(x, s) - f(x) = \alpha \frac{\partial^2 U}{\partial x^2}
\frac{\partial^2 U}{\partial x^2} - \frac{s}{\alpha} U = -\frac{f(x)}{\alpha}
U(x, s) = A(s) \sinh\left(\sqrt{\frac{s}{\alpha}} x\right) + B(s) \cosh\left(\sqrt{\frac{s}{\alpha}} x\right) + \frac{f(x)}{s}
\begin{cases}
U(0, s) = 0 \
U(L, s) = 0
\end{cases}
可以求得 $A(s)$ 和 $B(s)$ We can solve for $A(s)$ and $B(s)$:\begin{cases}
B(s) = 0 \
A(s) \sinh\left(\sqrt{\frac{s}{\alpha}} L\right) = -\frac{f(x)}{s}
\end{cases}
U(x, s) = -\frac{f(x)}{s} \frac{\sinh\left(\sqrt{\frac{s}{\alpha}} x\right)}{\sinh\left(\sqrt{\frac{s}{\alpha}} L\right)}
u(x, t) = \mathcal{L}^{-1}\left{ U(x, s) \right}
利用拉普拉斯逆变换,我们可以得到 $u(x, t)$ 的表达式 Using the inverse Laplace transform, we can obtain the expression for $u(x, t)$. 通过拉普拉斯变换和逆变换,我们可以解决一类偏微分方程 This demonstrates the method of solving a class of partial differential equations using Laplace transform and its inverse.