拉普拉斯变换 Laplace Transform

定义 Definitions

拉普拉斯变换 Laplace Transform

给定一个函数 ,其拉普拉斯变换定义为

其中 是复数变量。

Given a function , its Laplace transform is defined as

where is a complex variable.

拉普拉斯逆变换 Inverse Laplace Transform

已知 的拉普拉斯变换,则 的拉普拉斯逆变换定义为

其中 是使得积分路径位于 的奇点右侧的实数。

Given as the Laplace transform of , the inverse Laplace transform is defined as

where is a real number such that the path of integration is to the right of all singularities of .

性质 Properties

线性 Linearity

拉普拉斯变换是线性的,即

The Laplace transform is linear, i.e.,

平移定理 Shift Theorem

如果 的拉普拉斯变换是 ,则

If the Laplace transform of is , then

导数 Derivative

如果 的拉普拉斯变换是 ,则

If the Laplace transform of is , then

证明 Proof

拉普拉斯变换的导数性质 Proof of Derivative Property of Laplace Transform

利用拉普拉斯变换解微分方程 Solving Differential Equations Using Laplace Transform

例子 Example: 热方程 Heat Equation

考虑如下热方程 Consider the heat equation:

其中 是热扩散系数 where is the thermal diffusivity.

初始条件 Initial Condition:

边界条件 Boundary Conditions:

  1. 对时间变量 进行拉普拉斯变换 Taking the Laplace transform with respect to :

记 $U(x, s) = \mathcal{L}\{u(x, t)\}$,利用拉普拉斯变换的导数性质得到: Let $U(x, s) = \mathcal{L}\{u(x, t)\}$, using the derivative property of the Laplace transform:

sU(x, s) - u(x, 0) = \alpha \frac{\partial^2 U}{\partial x^2}

代入初始条件 Substituting the initial condition $u(x, 0) = f(x)$:

sU(x, s) - f(x) = \alpha \frac{\partial^2 U}{\partial x^2}

\frac{\partial^2 U}{\partial x^2} - \frac{s}{\alpha} U = -\frac{f(x)}{\alpha}

U(x, s) = A(s) \sinh\left(\sqrt{\frac{s}{\alpha}} x\right) + B(s) \cosh\left(\sqrt{\frac{s}{\alpha}} x\right) + \frac{f(x)}{s}

\begin{cases}

U(0, s) = 0 \

U(L, s) = 0

\end{cases}

可以求得 $A(s)$ 和 $B(s)$ We can solve for $A(s)$ and $B(s)$:

\begin{cases}

B(s) = 0 \

A(s) \sinh\left(\sqrt{\frac{s}{\alpha}} L\right) = -\frac{f(x)}{s}

\end{cases}

U(x, s) = -\frac{f(x)}{s} \frac{\sinh\left(\sqrt{\frac{s}{\alpha}} x\right)}{\sinh\left(\sqrt{\frac{s}{\alpha}} L\right)}

u(x, t) = \mathcal{L}^{-1}\left{ U(x, s) \right}

利用拉普拉斯逆变换,我们可以得到 $u(x, t)$ 的表达式 Using the inverse Laplace transform, we can obtain the expression for $u(x, t)$. 通过拉普拉斯变换和逆变换,我们可以解决一类偏微分方程 This demonstrates the method of solving a class of partial differential equations using Laplace transform and its inverse.