IS CS-2021W-03

题目来源Problem 3 日期:2024-07-24 题目主题:CS-Formal Languages-Operations on Languages

解题思路

这道题目主要涉及正则语言、有限自动机和上下文无关语言的概念。我们需要理解新定义的操作 ,并将其应用于不同类型的语言。问题逐步深入,从具体的有限语言集合运算,到正则表达式的操作,再到有限自动机的构造,最后探讨了这个操作在更广泛的语言类别上的性质。

Solution

Question 1

Let and . We need to find the set .

We check each element :

  1. For :
    • Possible are
  2. For :
    • Possible are
  3. For :
    • Possible are

Collecting all possible :

Question 2

Let and . We need to express using a regular expression.

Let’s analyze this step by step:

  1. Words in are of the form where and for all .
  2. Words in are repetitions of .
  3. The possible prefixes from that could start a word in are:
  • (empty string)

Now, let’s consider what would be in each case:

  • If , then can be any word in , i.e.,
  • If , then must start with and then continue with , i.e.,
  • If , then must start with and then continue with , i.e.,

Therefore, can be expressed as the union of these possibilities:

This can be written more compactly as:

or

This regular expression captures all possible suffixes that, when concatenated with a word from , result in a word from .

Question 3

To construct a non-deterministic finite automaton (NFA) that accepts , we can follow these steps:

a) Start with the structure of .

b) Add -transitions from each state of to the initial state of .

c) Make all final states of non-final.

d) Keep the final states of as final.

Formally, we can define the NFA where:

  • is the same as before
  • for
  • for
  • for
  • is the initial state of

This NFA simulates until it non-deterministically decides to switch to using an -transition, then continues in until it reaches a final state of .

Question 4

The statement “For every context-free language and regular language , is a regular language” is false.

Counterexample:

Let (a context-free language that is not regular)

Let (a regular language)

Then , which is not a regular language.

This counterexample shows that the statement is false in general.

知识点

正则语言上下文无关语言NFA正则表达式

难点思路

问题 3 和 4 可能对考生来说比较困难。

对于问题 3,关键是理解如何通过 NFA 的非确定性来模拟 操作。我们使用 -转移来允许在 的任何状态 ” 猜测 ” 是否应该开始匹配 的部分。

对于问题 4,难点在于构造合适的反例。需要选择一个非正则的上下文无关语言,并找到一个合适的正则语言,使得它们的 操作结果仍然是非正则的。

解题技巧和信息

  1. 对于涉及新定义操作的题目,先仔细理解定义,然后尝试用具体的例子来理解操作的含义。
  2. 在处理正则表达式时,考虑语言中单词的结构和可能的前缀。
  3. 构造 NFA 时,利用非确定性和 -转移来模拟复杂的操作。
  4. 在证明语言类别相关的陈述时,寻找反例通常比证明正确性更容易。尝试使用经典的非正则上下文无关语言作为起点。

重点词汇

  • finite automaton 有限自动机
  • non-deterministic finite automaton (NFA) 非确定性有限自动机
  • regular expression 正则表达式
  • context-free language 上下文无关语言
  • -transition -转移
  • counterexample 反例

参考资料

  1. Introduction to Automata Theory, Languages, and Computation by John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman. Chapter 2 (Finite Automata) and Chapter 4 (Context-Free Grammars).
  2. Sipser, M. (2012). Introduction to the Theory of Computation. Cengage Learning. Chapter 1 (Regular Languages) and Chapter 2 (Context-Free Languages).