CBMS-2016-08

题目来源:[[文字版题库/CBMS/2016#Problem 8|2016#Problem 8]] 日期:2024-07-31 题目主题:Math-线性代数-矩阵与特征值

解题思路

  1. 求逆矩阵:首先,我们使用 矩阵的公式来求其逆矩阵。
  2. 方差-协方差矩阵
    • 计算给定数据点的均值。
    • 计算方差和协方差。
    • 构造方差-协方差矩阵。
  3. 特征值和特征向量
    • 计算方差-协方差矩阵的特征值和特征向量。
  4. 证明:利用特征值和特征向量的性质,证明矩阵 的逆矩阵 的特征值为

Solution

Question 1: Inverse Matrix

To find the inverse of the matrix

we use the formula for the inverse of a matrix:

where and .

For our matrix,

First, compute the determinant:

Then, the inverse is

Question 2: Variance-Covariance Matrix and Eigenvalues

A: Variance-Covariance Matrix

Given data points , we first compute the mean values:

Next, we compute the variances and covariances:

Thus, the variance-covariance matrix is:

B: Eigenvalues and Eigenvectors

To find the eigenvalues of , solve the characteristic equation:

For our matrix ,

the determinant is:

Solving for , we get:

To find the eigenvectors corresponding to the eigenvalues and , we solve the equation .

For

The equation becomes:

This gives us the system of equations:

From the first equation, we obtain . Therefore, an eigenvector corresponding to is:

For

The equation becomes:

This gives us the system of equations:

From the first equation, we obtain . Therefore, an eigenvector corresponding to is:

Thus, the eigenvectors corresponding to the eigenvalues and are and , respectively.

Question 3: Prove Eigenvalues of

Let be a regular matrix with eigenvalues and corresponding eigenvectors . By definition, we have:

Thus, the eigenvalues of are for .

知识点

矩阵逆方差协方差矩阵特征值特征向量

解题技巧和信息

  1. 计算逆矩阵时,确保熟记 矩阵的逆矩阵公式。
  2. 计算方差-协方差矩阵时,需准确计算均值、方差和协方差。
  3. 找特征值和特征向量时,熟悉特征值方程和特征向量的计算方法。
  4. 证明部分注意利用特征值和特征向量的定义和性质。

重点词汇

  • Inverse matrix: 逆矩阵
  • Variance-Covariance matrix: 方差-协方差矩阵
  • Eigenvalue: 特征值
  • Eigenvector: 特征向量

参考资料

  1. Gilbert Strang, Linear Algebra and Its Applications, Chapter 3.
  2. Axler, Sheldon, Linear Algebra Done Right, Chapter 5.