CBMS-2016-08
题目来源:[[文字版题库/CBMS/2016#Problem 8|2016#Problem 8]] 日期:2024-07-31 题目主题:Math-线性代数-矩阵与特征值
解题思路
- 求逆矩阵:首先,我们使用 矩阵的公式来求其逆矩阵。
- 方差-协方差矩阵:
- 计算给定数据点的均值。
- 计算方差和协方差。
- 构造方差-协方差矩阵。
- 特征值和特征向量:
- 计算方差-协方差矩阵的特征值和特征向量。
- 证明:利用特征值和特征向量的性质,证明矩阵 的逆矩阵 的特征值为 。
Solution
Question 1: Inverse Matrix
To find the inverse of the matrix
we use the formula for the inverse of a matrix:
where and .
For our matrix,
First, compute the determinant:
Then, the inverse is
Question 2: Variance-Covariance Matrix and Eigenvalues
A: Variance-Covariance Matrix
Given data points , we first compute the mean values:
Next, we compute the variances and covariances:
Thus, the variance-covariance matrix is:
B: Eigenvalues and Eigenvectors
To find the eigenvalues of , solve the characteristic equation:
For our matrix ,
the determinant is:
Solving for , we get:
To find the eigenvectors corresponding to the eigenvalues and , we solve the equation .
For
The equation becomes:
This gives us the system of equations:
From the first equation, we obtain . Therefore, an eigenvector corresponding to is:
For
The equation becomes:
This gives us the system of equations:
From the first equation, we obtain . Therefore, an eigenvector corresponding to is:
Thus, the eigenvectors corresponding to the eigenvalues and are and , respectively.
Question 3: Prove Eigenvalues of
Let be a regular matrix with eigenvalues and corresponding eigenvectors . By definition, we have:
Thus, the eigenvalues of are for .
知识点
解题技巧和信息
- 计算逆矩阵时,确保熟记 矩阵的逆矩阵公式。
- 计算方差-协方差矩阵时,需准确计算均值、方差和协方差。
- 找特征值和特征向量时,熟悉特征值方程和特征向量的计算方法。
- 证明部分注意利用特征值和特征向量的定义和性质。
重点词汇
- Inverse matrix: 逆矩阵
- Variance-Covariance matrix: 方差-协方差矩阵
- Eigenvalue: 特征值
- Eigenvector: 特征向量
参考资料
- Gilbert Strang, Linear Algebra and Its Applications, Chapter 3.
- Axler, Sheldon, Linear Algebra Done Right, Chapter 5.