二次型与正定矩阵 | Quadratic Forms and Positive Definite Matrices
定义 | Definitions
二次型 | Quadratic Form
二次型是指形式为 的表达式,其中 是 维列向量, 是 的对称矩阵
A quadratic form is an expression of the form , where is an -dimensional column vector and is an symmetric matrix
正定矩阵 | Positive Definite Matrix
正定矩阵是指对于任何非零向量 ,都有 的对称矩阵
A positive definite matrix is a symmetric matrix such that for any non-zero vector
性质 | Properties
二次型的性质 | Properties of Quadratic Forms
-
对称性:
-
如果 是正定矩阵,则 为正定二次型
-
可以通过特征值分解写成 ,其中 是 的特征值, 是线性变换后的变量
-
Symmetry:
-
If is a positive definite matrix, then is a positive definite quadratic form
-
can be expressed using eigenvalue decomposition as , where are the eigenvalues of and are the transformed variables
正定矩阵的性质 | Properties of Positive Definite Matrices
-
所有特征值均为正
-
所有主子矩阵的行列式均为正
-
可被分解为 ,其中 为下三角矩阵
-
All eigenvalues are positive
-
Determinants of all leading principal minors are positive
-
can be decomposed as , where is a lower triangular matrix
计算技巧 | Calculation Techniques
二次型化简 | Simplifying Quadratic Forms
通过正交变换 将 对角化,可以将二次型化简为
By orthogonal transformation that diagonalizes , the quadratic form can be simplified to
判定正定矩阵的方法 | Methods to Determine Positive Definite Matrices
- 确认所有特征值是否均为正
- 使用主子矩阵行列式进行测试
- 计算 是否可以进行 Cholesky 分解
4. Cholesky Decomposition Cholesky 分解
- Check if all eigenvalues are positive
- Use leading principal minors to test
- Determine if can be decomposed using Cholesky decomposition
坐标变换 | Coordinate Transformations
正交变换 | Orthogonal Transformation
正交变换保持二次型的形式不变,即 ,其中 是正交矩阵
An orthogonal transformation preserves the form of the quadratic form, i.e., , where is an orthogonal matrix
仿射变换 | Affine Transformation
仿射变换包括旋转、平移等操作,可以用于化简或标准化二次型
Affine transformations include operations such as rotation and translation, and can be used to simplify or standardize quadratic forms
例子 | Examples
二次型的例子 | Example of a Quadratic Form
设 ,,则二次型为
Let and , then the quadratic form is
正定矩阵的例子 | Example of a Positive Definite Matrix
考虑矩阵 ,计算特征值
特征值为 ,均为正值,因此 为正定矩阵
Consider the matrix and compute the eigenvalues
The eigenvalues are , both positive, hence is a positive definite matrix
坐标变换中的应用 | Applications in Coordinate Transformations
对角化二次型 | Diagonalizing Quadratic Forms
为了将二次型 对角化,我们寻找正交矩阵 使得 为对角矩阵 ,于是
To diagonalize the quadratic form , we find an orthogonal matrix such that is a diagonal matrix , thus
坐标变换举例 | Example of Coordinate Transformation
假设 ,则特征值为 ,对应的特征向量为 ,。构造正交矩阵 并进行对角化
新的二次型为
Suppose , the eigenvalues are , with corresponding eigenvectors and . Construct the orthogonal matrix and diagonalize
The new quadratic form is