IS CS-2018S2-05

题目来源Problem 5 日期:2024-08-10 题目主题:CS-算法-优化与凸分析

解题思路

本题涵盖了优化与凸分析的多个概念,包括子梯度、子微分、范数及其在优化问题中的应用。主要思路是:

  1. 理解子梯度与子微分的定义:子梯度在凸函数的最小化过程中扮演重要角色,通过掌握它们的性质,可以求解与此相关的最优化问题。
  2. 计算具体函数的子微分:对于给定的函数形式,通过直接计算或者利用性质推导出子微分。
  3. 分析优化问题中的条件:利用子梯度的定义和性质,尤其是最优性条件来推导出问题的最优解。

Solution

Question 1(a)

For where :

The function is convex but non-differentiable at . The subdifferential is defined as the set of all subgradients at .

  • Case 1: If , then , which is differentiable and . Therefore, .

  • Case 2: If , then , which is differentiable and . Therefore, .

  • Case 3: If , is non-differentiable, and the subdifferential is the set of all values such that for all . This inequality simplifies to:

    By checking different cases for and , we find that must satisfy . Therefore, .

Thus,

Question 1(b)

For where :

The function is the sum of absolute values of the components of , i.e.,

The subdifferential is the Cartesian product of the subdifferentials of each (as shown in part (a)). Therefore, each element of the subgradient corresponding to satisfies:

Thus, the subdifferential is:

Question 2

For where and :

First, differentiate to find its gradient:

where and is defined as:

The subdifferential is thus:

which gives:

To minimize , we require . This leads to the following conditions:

  • If , , so .
  • If , , so .
  • If , , so .

Therefore, the minimizing is:

Question 3

For where and :

The function is a sum of a smooth term and a non-smooth term .

The subdifferential is:

Given that has been computed in Question 1(b), the subdifferential can be expressed as:

To minimize , we require , implying:

For each , if , the condition for minimization is:

Thus, the necessary and sufficient condition for is:

Question 4

Given the optimization problem at each iteration:

we seek to express such that is necessary and sufficient for .

Using the KKT (Karush-Kuhn-Tucker) conditions, we require:

where is when .

This simplifies to:

Thus, the necessary and sufficient condition for is:

Therefore, .

知识点

子梯度子微分凸优化L1范数L2范数最优性条件

解题技巧和信息

  • 子梯度的计算:当函数不可微时,子梯度提供了非平滑优化中寻找最优解的工具。理解和使用子微分集合是解决非平滑优化问题的关键。
  • L1 正则化的作用:在优化问题中加入 L1 范数有助于获得稀疏解,即许多解分量为零,这在特征选择中尤为重要。
  • KKT 条件的应用:在含有约束的优化问题中,KKT 条件可以帮助确定解的结构,例如稀疏性条件。

重点词汇

  • Subgradient 子梯度
  • Subdifferential 子微分
  • Convex function 凸函数
  • L1 norm L1 范数
  • Optimality condition 最优性条件
  • Karush-Kuhn-Tucker conditions (KKT conditions) 卡鲁什-库恩-塔克条件

参考资料

  1. Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press. - Chapter 3 and Chapter 5 for subgradient and subdifferential.
  2. Nocedal, J., & Wright, S. J. (2006). Numerical Optimization. Springer Science & Business Media. - Chapter 14 for optimization algorithms with nonsmooth functions.