IS CS-2018S2-05
题目来源:Problem 5 日期:2024-08-10 题目主题:CS-算法-优化与凸分析
解题思路
本题涵盖了优化与凸分析的多个概念,包括子梯度、子微分、范数及其在优化问题中的应用。主要思路是:
- 理解子梯度与子微分的定义:子梯度在凸函数的最小化过程中扮演重要角色,通过掌握它们的性质,可以求解与此相关的最优化问题。
- 计算具体函数的子微分:对于给定的函数形式,通过直接计算或者利用性质推导出子微分。
- 分析优化问题中的条件:利用子梯度的定义和性质,尤其是最优性条件来推导出问题的最优解。
Solution
Question 1(a)
For where :
The function is convex but non-differentiable at . The subdifferential is defined as the set of all subgradients at .
-
Case 1: If , then , which is differentiable and . Therefore, .
-
Case 2: If , then , which is differentiable and . Therefore, .
-
Case 3: If , is non-differentiable, and the subdifferential is the set of all values such that for all . This inequality simplifies to:
By checking different cases for and , we find that must satisfy . Therefore, .
Thus,
Question 1(b)
For where :
The function is the sum of absolute values of the components of , i.e.,
The subdifferential is the Cartesian product of the subdifferentials of each (as shown in part (a)). Therefore, each element of the subgradient corresponding to satisfies:
Thus, the subdifferential is:
Question 2
For where and :
First, differentiate to find its gradient:
where and is defined as:
The subdifferential is thus:
which gives:
To minimize , we require . This leads to the following conditions:
- If , , so .
- If , , so .
- If , , so .
Therefore, the minimizing is:
Question 3
For where and :
The function is a sum of a smooth term and a non-smooth term .
The subdifferential is:
Given that has been computed in Question 1(b), the subdifferential can be expressed as:
To minimize , we require , implying:
For each , if , the condition for minimization is:
Thus, the necessary and sufficient condition for is:
Question 4
Given the optimization problem at each iteration:
we seek to express such that is necessary and sufficient for .
Using the KKT (Karush-Kuhn-Tucker) conditions, we require:
where is when .
This simplifies to:
Thus, the necessary and sufficient condition for is:
Therefore, .
知识点
解题技巧和信息
- 子梯度的计算:当函数不可微时,子梯度提供了非平滑优化中寻找最优解的工具。理解和使用子微分集合是解决非平滑优化问题的关键。
- L1 正则化的作用:在优化问题中加入 L1 范数有助于获得稀疏解,即许多解分量为零,这在特征选择中尤为重要。
- KKT 条件的应用:在含有约束的优化问题中,KKT 条件可以帮助确定解的结构,例如稀疏性条件。
重点词汇
- Subgradient 子梯度
- Subdifferential 子微分
- Convex function 凸函数
- L1 norm L1 范数
- Optimality condition 最优性条件
- Karush-Kuhn-Tucker conditions (KKT conditions) 卡鲁什-库恩-塔克条件
参考资料
- Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press. - Chapter 3 and Chapter 5 for subgradient and subdifferential.
- Nocedal, J., & Wright, S. J. (2006). Numerical Optimization. Springer Science & Business Media. - Chapter 14 for optimization algorithms with nonsmooth functions.