CBMS-2024A-07

题目来源Question 7 日期:2024-07-31 题目主题:CS-算法-迭代函数分析

解题思路

这个问题涉及迭代函数的分析,主要考察了对数函数的性质和迭代过程的理解。我们需要仔细分析每个子问题,利用函数迭代和对数的性质来解决。问题 (1) 和 (2) 为问题 (3) 的解答铺垫,因为它们帮助我们理解 函数的行为。

对于问题 (3),我们需要更仔细地分析 的关系。这需要我们对不同范围的 n 进行分类讨论,因为 的行为在不同的 n 值范围内会有所不同。

Solution

1. Proving when

To prove this, we need to show that is the minimum number of iterations needed to reduce to a value less than or equal to 1.

Let . By definition, .

Applying iteratively times:

This shows that iterations are sufficient to reduce to a value .

Now, let’s consider iterations:

This shows that iterations are not enough to reduce to a value .

Therefore, is the minimum number of iterations needed, proving that .

2. Finding minimum such that when

We need to find the smallest such that it takes exactly 5 iterations of to reduce to a value .

Let’s work backwards:

Continuing to apply :

Therefore, the minimum value of that satisfies is .

3. Comparing and when

Let’s analyze these two expressions by considering different ranges of n:

  1. : This applies to the number of iterations needed to reduce to .
  2. : This finds the number of iterations needed to reduce to .

Let’s consider different cases:

Case 1:

  • In this case, , because one application of is sufficient to reduce to .
  • , because
  • Therefore, when ,

Case 2:

  • In this case, , because two applications of are needed to reduce to .
  • , because
  • Therefore, when ,

Case 3:

  • In this case,

For , we can prove that :

Let .

This inequality holds because for any integer , .

Therefore, we can conclude:

  • When :
  • When :
  • When :

In summary, for all , with strict inequality when .

知识点

函数迭代对数性质天花板函数不等式

难点思路

问题 (2) 中,从 反推 的最小值需要仔细思考迭代过程。我们需要从最后一步开始,逐步应用指数函数来得到最终结果。

解题技巧和信息

  1. 在处理迭代函数时,正向和反向思考都很重要。有时从最终状态反推初始值会更容易。
  2. 对数函数和指数函数的性质在这类问题中经常用到,熟悉它们的特性和关系很重要。
  3. 在比较复杂函数的大小关系时,考虑极限情况和通用情况都很重要。
  4. 在分析复杂函数关系时,分类讨论是一个强有力的工具。它可以帮助我们处理不同范围内的特殊情况。
  5. 对于涉及对数和整数的问题,特别注意整数边界情况(如 2 的整数次幂)往往很重要。
  6. 在证明不等式时,有时需要考虑具体的数值范围,而不仅仅是一般情况。

重点词汇

  • iterative function 迭代函数
  • ceiling function 天花板函数
  • logarithm 对数
  • exponentiation 指数运算
  • inequality 不等式

参考资料

  1. Concrete Mathematics: A Foundation for Computer Science (2nd Edition) by Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Chapter 3: Integer Functions
  2. Introduction to Algorithms (3rd Edition) by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Chapter 3: Growth of Functions