CBMS-2024A-07
题目来源:Question 7 日期:2024-07-31 题目主题:CS-算法-迭代函数分析
解题思路
这个问题涉及迭代函数的分析,主要考察了对数函数的性质和迭代过程的理解。我们需要仔细分析每个子问题,利用函数迭代和对数的性质来解决。问题 (1) 和 (2) 为问题 (3) 的解答铺垫,因为它们帮助我们理解 函数的行为。
对于问题 (3),我们需要更仔细地分析 和 的关系。这需要我们对不同范围的 n 进行分类讨论,因为 的行为在不同的 n 值范围内会有所不同。
Solution
1. Proving when
To prove this, we need to show that is the minimum number of iterations needed to reduce to a value less than or equal to 1.
Let . By definition, .
Applying iteratively times:
This shows that iterations are sufficient to reduce to a value .
Now, let’s consider iterations:
This shows that iterations are not enough to reduce to a value .
Therefore, is the minimum number of iterations needed, proving that .
2. Finding minimum such that when
We need to find the smallest such that it takes exactly 5 iterations of to reduce to a value .
Let’s work backwards:
Continuing to apply :
Therefore, the minimum value of that satisfies is .
3. Comparing and when
Let’s analyze these two expressions by considering different ranges of n:
- : This applies to the number of iterations needed to reduce to .
- : This finds the number of iterations needed to reduce to .
Let’s consider different cases:
Case 1:
- In this case, , because one application of is sufficient to reduce to .
- , because
- Therefore, when ,
Case 2:
- In this case, , because two applications of are needed to reduce to .
- , because
- Therefore, when ,
Case 3:
- In this case,
For , we can prove that :
Let .
This inequality holds because for any integer , .
Therefore, we can conclude:
- When :
- When :
- When :
In summary, for all , with strict inequality when .
知识点
难点思路
问题 (2) 中,从 反推 的最小值需要仔细思考迭代过程。我们需要从最后一步开始,逐步应用指数函数来得到最终结果。
解题技巧和信息
- 在处理迭代函数时,正向和反向思考都很重要。有时从最终状态反推初始值会更容易。
- 对数函数和指数函数的性质在这类问题中经常用到,熟悉它们的特性和关系很重要。
- 在比较复杂函数的大小关系时,考虑极限情况和通用情况都很重要。
- 在分析复杂函数关系时,分类讨论是一个强有力的工具。它可以帮助我们处理不同范围内的特殊情况。
- 对于涉及对数和整数的问题,特别注意整数边界情况(如 2 的整数次幂)往往很重要。
- 在证明不等式时,有时需要考虑具体的数值范围,而不仅仅是一般情况。
重点词汇
- iterative function 迭代函数
- ceiling function 天花板函数
- logarithm 对数
- exponentiation 指数运算
- inequality 不等式
参考资料
- Concrete Mathematics: A Foundation for Computer Science (2nd Edition) by Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Chapter 3: Integer Functions
- Introduction to Algorithms (3rd Edition) by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Chapter 3: Growth of Functions