CBMS-2024B-07
题目来源:Question 07 日期:2024-08-04 题目主题:CS-算法-复杂度分析
解题思路
这道题目主要涉及递归方程的复杂度分析和渐进符号的性质。我们需要运用主定理、迭代法等技巧来解决递归方程,并理解大 O 符号的性质来证明命题。对于最后一个问题,我们需要根据递归方程的形式来判断使用哪种方法求解。
Solution
1.
To solve this recurrence, we can use the iteration method:
Therefore, .
2.
This recurrence fits the form of the Master Theorem with , , and .
Since for , we are in case 1 of the Master Theorem.
Therefore, .
3.
This recurrence also fits the form of the Master Theorem with , , and .
Since , we are in case 2 of the Master Theorem.
Therefore, .
4. if and only if
This proposition is false. Let’s examine both directions:
Part 1: If , then
This direction is true.
Proof: Assume . By definition, and such that for all .
We know that .
Since , we have for all .
Therefore, for all .
This means .
Part 2: If , then
This direction is false.
Consider the function .
This means that for any constant , there will always be some where .
Therefore, the statement “if , then ” is false.
Conclusion
The original proposition is false because while , the reverse inclusion does not hold. There are functions in that grow faster than any function in .
A correct statement would be: If , then , but the converse is not necessarily true.
5.
Let’s analyze this recurrence for different cases of . We’ll ignore the floor functions for the asymptotic analysis as they don’t affect the overall complexity.
Case 1:
In this case, we can use a variant of the Master Theorem. We have:
Here, . We need to compare with .
Since , we have . Therefore, is asymptotically larger.
Thus, when .
Case 2:
When , we have:
This case doesn’t fit directly into the Master Theorem. Let’s solve it by substitution:
Continuing this process, we get:
Therefore, when , .
Case 3:
In this case, we again compare with .
Since , we have .
This means , but is asymptotically smaller than .
Therefore, when , .
Case 4:
When , we have .
In this case, , which is asymptotically larger than .
Therefore, when , .
Summary
- For :
- For :
- For :
知识点
难点思路
第 4 小题的证明和第 5 小题的复杂度分析较为困难。对于第 4 小题,关键是理解指数函数的性质和大 O 符号的定义。对于第 5 小题,由于不能直接应用主定理,需要通过猜测和归纳证明的方法来解决。
解题技巧和信息
- 对于简单的递归方程,可以尝试使用迭代法直接求解。
- 对于符合形式的递归方程,优先考虑使用主定理。
- 当递归方程不能直接应用主定理时,可以尝试猜测复杂度并使用归纳法证明。
- 在处理渐进符号时,要注意指数函数、对数函数等的性质。
常见算法复杂度排序(从低到高):
重点词汇
- recurrence relation 递归关系
- Master Theorem 主定理
- iteration method 迭代法
- induction proof 归纳证明
- asymptotic notation 渐进符号
- floor function 下取整函数
参考资料
- Introduction to Algorithms (CLRS), Chapter 4: Divide-and-Conquer
- Algorithm Design (Kleinberg & Tardos), Chapter 5: Divide and Conquer
- The Art of Computer Programming (Knuth), Volume 1: Fundamental Algorithms, Section 1.2.11: Asymptotic Representations