CBMS-2024B-07

题目来源Question 07 日期:2024-08-04 题目主题:CS-算法-复杂度分析

解题思路

这道题目主要涉及递归方程的复杂度分析和渐进符号的性质。我们需要运用主定理、迭代法等技巧来解决递归方程,并理解大 O 符号的性质来证明命题。对于最后一个问题,我们需要根据递归方程的形式来判断使用哪种方法求解。

Solution

1.

To solve this recurrence, we can use the iteration method:

Therefore, .

2.

This recurrence fits the form of the Master Theorem with , , and .

Since for , we are in case 1 of the Master Theorem.

Therefore, .

3.

This recurrence also fits the form of the Master Theorem with , , and .

Since , we are in case 2 of the Master Theorem.

Therefore, .

4. if and only if

This proposition is false. Let’s examine both directions:

Part 1: If , then

This direction is true.

Proof: Assume . By definition, and such that for all .

We know that .

Since , we have for all .

Therefore, for all .

This means .

Part 2: If , then

This direction is false.

Consider the function .

This means that for any constant , there will always be some where .

Therefore, the statement “if , then ” is false.

Conclusion

The original proposition is false because while , the reverse inclusion does not hold. There are functions in that grow faster than any function in .

A correct statement would be: If , then , but the converse is not necessarily true.

5.

Let’s analyze this recurrence for different cases of . We’ll ignore the floor functions for the asymptotic analysis as they don’t affect the overall complexity.

Case 1:

In this case, we can use a variant of the Master Theorem. We have:

Here, . We need to compare with .

Since , we have . Therefore, is asymptotically larger.

Thus, when .

Case 2:

When , we have:

This case doesn’t fit directly into the Master Theorem. Let’s solve it by substitution:

Continuing this process, we get:

Therefore, when , .

Case 3:

In this case, we again compare with .

Since , we have .

This means , but is asymptotically smaller than .

Therefore, when , .

Case 4:

When , we have .

In this case, , which is asymptotically larger than .

Therefore, when , .

Summary

  • For :
  • For :
  • For :

知识点

复杂度分析递归主定理

难点思路

第 4 小题的证明和第 5 小题的复杂度分析较为困难。对于第 4 小题,关键是理解指数函数的性质和大 O 符号的定义。对于第 5 小题,由于不能直接应用主定理,需要通过猜测和归纳证明的方法来解决。

解题技巧和信息

  1. 对于简单的递归方程,可以尝试使用迭代法直接求解。
  2. 对于符合形式的递归方程,优先考虑使用主定理。
  3. 当递归方程不能直接应用主定理时,可以尝试猜测复杂度并使用归纳法证明。
  4. 在处理渐进符号时,要注意指数函数、对数函数等的性质。

常见算法复杂度排序(从低到高):

重点词汇

  • recurrence relation 递归关系
  • Master Theorem 主定理
  • iteration method 迭代法
  • induction proof 归纳证明
  • asymptotic notation 渐进符号
  • floor function 下取整函数

参考资料

  1. Introduction to Algorithms (CLRS), Chapter 4: Divide-and-Conquer
  2. Algorithm Design (Kleinberg & Tardos), Chapter 5: Divide and Conquer
  3. The Art of Computer Programming (Knuth), Volume 1: Fundamental Algorithms, Section 1.2.11: Asymptotic Representations