2024
Problem 1
Let be the set of the three-dimensional real column vectors and be the set of the three-by-three real matrices. Let , , and be linearly independent unit-length vectors and be a unit-length vector not parallel to , , or . Let and be square matrices defined as
Here, and denote the transpose of a matrix and a vector , respectively. Answer the following questions.
-
Find the condition for such that the rank of is three.
-
In the three-dimensional Euclidean space , consider four planes is a real number, and that satisfy the following three conditions: (i) the rank of is three, (ii) is not the empty set, and (iii) there exists a sphere to which are tangent. The position vector of the center of is represented by using a vector . Express using .
-
Show that is a positive definite symmetric matrix.
-
Consider the point from which the sum of squared distances to four planes is a real number, and is minimized. The position vector of is represented by using a vector . Express using and .
-
Let be a straight line through a point , the position vector of which is , parallel to in . Let be the orthogonal projection of an arbitrary point , the position vector of which is , onto . The position vector of is represented by using a matrix . The identity matrix is denoted by .
(a) Express using and .
(b) Show that .
(c) Consider a plane is a non-zero vector, and is a real number). Let be the point from which the sum of squared distances to , , and is minimized. When , , and are orthogonal to each other, the position vector of is represented by
using a vector which is independent of and . Express using and .
设 为三维实列向量的集合, 为三阶实方阵的集合。设 、 和 为线性无关的单位长度向量, 为不平行于 、 或 的单位长度向量。令 和 为定义如下的方阵:
其中, 和 分别表示矩阵 和向量 的转置。回答以下问题。
-
求 满足 的秩为三的条件。
-
在三维欧氏空间 中,考虑四个平面 为实数,,其满足以下三个条件:(i) 的秩为三,(ii) 不是空集,(iii)存在一个球 ,其与 相切。球 的中心位置向量由 表示,其中 。用 表示 。
-
证明 是一个正定对称矩阵。
-
考虑点 ,从该点到四个平面 为实数, 的平方距离之和最小。点 的位置向量由 表示,其中 。用 和 表示 。
-
设 是通过点 的一条直线,该点的位置向量为 ,平行于 在 中。设 是任意点 的正交投影,该点的位置向量为 ,投影到 上。 的位置向量由 表示,其中 。单位矩阵记为 。
(a) 用 和 表示 。
(b) 证明 。
(c) 考虑平面 是非零向量, 为实数)。设 为从该点到 、 和 的平方距离之和最小的点。当 、 和 彼此正交时,点 的位置向量表示为
其中 是独立于 和 的向量。用 和 表示 。
Problem 2
Consider a function defined by the following integral for positive real numbers .
Answer the following questions. You may answer without showing that the above integral converges.
-
Find the value of .
-
The inequality holds for any positive real number and non-negative integer .
- For positive real numbers , show the following inequality.
- When , show that the following inequality holds for any real number that satisfies .
-
When the second-order derivative of is expressed as
find a function . You may answer without showing that the order of differentiation and integration can be exchanged.
- Find the value of defined as
Here, you may use the fact that the following relation holds.
- Define a function for positive real numbers and as
Find the value of defined as
考虑由以下积分定义的函数 ,其中 是正实数。
回答以下问题。你可以在不证明上述积分收敛的情况下作答。
-
求 的值。
-
不等式 对任意正实数 和非负整数 成立。
- 对于正实数 ,证明以下不等式。
- 当 时,证明以下不等式对任何满足 的实数 成立。
-
当 的二阶导数表示为
找出函数 。你可以在不证明微分与积分次序可以交换的情况下作答。
- 求 的值,其定义如下:
这里,你可以使用以下关系:
- 定义一个函数 ,其中 和 是正实数,定义为
求 的值,其定义如下:
Problem 3
Consider a particle moving on the coordinate plane, and denote the location of the particle at time by . The initial location of the particle is . Also, if , then with probability , with probability , and with probability . Here, it is assumed that , , and the movements of the particle at different time points are independent. Let denote the location of the particle such that for the first time. Answer the following questions.
-
Show that the probability that is .
-
For non-negative integers , find the probability that .
-
For non-negative integers , let denote the probability that .
- (a) Find .
- (b) Express the probability that given the condition , using .
- (c) Show that .
-
Express the expectation of using and .
-
Express the correlation coefficient between and using and , where denotes the expectation of and denotes the expectation of .
考虑一个在坐标平面上运动的粒子,并用 表示时间 时粒子的位置。粒子的初始位置是 。此外,如果 ,那么 的概率为 , 的概率为 ,而 的概率为 。这里假设 ,,并且粒子在不同时间点的运动是独立的。令 表示粒子的位置,使得 首次发生。回答以下问题。
-
证明 的概率是 。
-
对于非负整数 ,求 的概率。
-
对于非负整数 ,令 表示 的概率。
- (a) 求 。
- (b) 使用 表达 在 的条件下的概率。
- (c) 证明 。
-
使用 和 表达 的期望值。
-
使用 和 表达 和 之间的相关系数,其中 表示 的期望, 表示 的期望。