2024

Problem 1

Let be the set of the three-dimensional real column vectors and be the set of the three-by-three real matrices. Let , , and be linearly independent unit-length vectors and be a unit-length vector not parallel to , , or . Let and be square matrices defined as

Here, and denote the transpose of a matrix and a vector , respectively. Answer the following questions.

  1. Find the condition for such that the rank of is three.

  2. In the three-dimensional Euclidean space , consider four planes is a real number, and that satisfy the following three conditions: (i) the rank of is three, (ii) is not the empty set, and (iii) there exists a sphere to which are tangent. The position vector of the center of is represented by using a vector . Express using .

  3. Show that is a positive definite symmetric matrix.

  4. Consider the point from which the sum of squared distances to four planes is a real number, and is minimized. The position vector of is represented by using a vector . Express using and .

  5. Let be a straight line through a point , the position vector of which is , parallel to in . Let be the orthogonal projection of an arbitrary point , the position vector of which is , onto . The position vector of is represented by using a matrix . The identity matrix is denoted by .

    (a) Express using and .

    (b) Show that .

    (c) Consider a plane is a non-zero vector, and is a real number). Let be the point from which the sum of squared distances to , , and is minimized. When , , and are orthogonal to each other, the position vector of is represented by

    using a vector which is independent of and . Express using and .


为三维实列向量的集合, 为三阶实方阵的集合。设 为线性无关的单位长度向量, 为不平行于 的单位长度向量。令 为定义如下的方阵:

其中, 分别表示矩阵 和向量 的转置。回答以下问题。

  1. 满足 的秩为三的条件。

  2. 在三维欧氏空间 中,考虑四个平面 为实数,,其满足以下三个条件:(i) 的秩为三,(ii) 不是空集,(iii)存在一个球 ,其与 相切。球 的中心位置向量由 表示,其中 。用 表示

  3. 证明 是一个正定对称矩阵。

  4. 考虑点 ,从该点到四个平面 为实数, 的平方距离之和最小。点 的位置向量由 表示,其中 。用 表示

  5. 是通过点 的一条直线,该点的位置向量为 ,平行于 中。设 是任意点 的正交投影,该点的位置向量为 ,投影到 上。 的位置向量由 表示,其中 。单位矩阵记为

    (a) 用 表示

    (b) 证明

    (c) 考虑平面 是非零向量, 为实数)。设 为从该点到 的平方距离之和最小的点。当 彼此正交时,点 的位置向量表示为

    其中 是独立于 的向量。用 表示


Problem 2

Consider a function defined by the following integral for positive real numbers .

Answer the following questions. You may answer without showing that the above integral converges.

  1. Find the value of .

  2. The inequality holds for any positive real number and non-negative integer .

    1. For positive real numbers , show the following inequality.
    1. When , show that the following inequality holds for any real number that satisfies .
  3. When the second-order derivative of is expressed as

find a function . You may answer without showing that the order of differentiation and integration can be exchanged.

  1. Find the value of defined as

Here, you may use the fact that the following relation holds.

  1. Define a function for positive real numbers and as

Find the value of defined as


考虑由以下积分定义的函数 ,其中 是正实数。

回答以下问题。你可以在不证明上述积分收敛的情况下作答。

  1. 的值。

  2. 不等式 对任意正实数 和非负整数 成立。

    1. 对于正实数 ,证明以下不等式。
    1. 时,证明以下不等式对任何满足 的实数 成立。
  3. 的二阶导数表示为

找出函数 。你可以在不证明微分与积分次序可以交换的情况下作答。

  1. 的值,其定义如下:

这里,你可以使用以下关系:

  1. 定义一个函数 ,其中 是正实数,定义为

的值,其定义如下:


Problem 3

Consider a particle moving on the coordinate plane, and denote the location of the particle at time by . The initial location of the particle is . Also, if , then with probability , with probability , and with probability . Here, it is assumed that , , and the movements of the particle at different time points are independent. Let denote the location of the particle such that for the first time. Answer the following questions.

  1. Show that the probability that is .

  2. For non-negative integers , find the probability that .

  3. For non-negative integers , let denote the probability that .

    • (a) Find .
    • (b) Express the probability that given the condition , using .
    • (c) Show that .
  4. Express the expectation of using and .

  5. Express the correlation coefficient between and using and , where denotes the expectation of and denotes the expectation of .


考虑一个在坐标平面上运动的粒子,并用 表示时间 时粒子的位置。粒子的初始位置是 。此外,如果 ,那么 的概率为 的概率为 ,而 的概率为 。这里假设 ,并且粒子在不同时间点的运动是独立的。令 表示粒子的位置,使得 首次发生。回答以下问题。

  1. 证明 的概率是

  2. 对于非负整数 ,求 的概率。

  3. 对于非负整数 ,令 表示 的概率。

    • (a) 求
    • (b) 使用 表达 的条件下的概率。
    • (c) 证明
  4. 使用 表达 的期望值。

  5. 使用 表达 之间的相关系数,其中 表示 的期望, 表示 的期望。