Cumulative Distribution Function (CDF)

Definition

English

The Cumulative Distribution Function (CDF) of a random variable is a function that gives the probability that will take a value less than or equal to . Mathematically, it is defined as:

中文

累积分布函数(CDF)是随机变量 的一个函数 ,它给出 取值小于或等于 的概率。数学上,它定义为:

Properties

English

  1. Non-decreasing: is a non-decreasing function.

  2. Limits:

  3. Right-continuous: is right-continuous, meaning .

  4. Probability Mass Function (PMF) Relation (for discrete random variables):

F_X(x) = \sum_{t \leq x} P(X = t)

F_X(x) = \int_{-\infty}^{x} f_X(t) , dt

### 中文 1. **非减性**:$F_X(x)$ 是一个非减函数。 2. **极限**: - $\lim_{x \to -\infty} F_X(x) = 0$ - $\lim_{x \to \infty} F_X(x) = 1$ 3. **右连续**:$F_X(x)$ 是右连续的,意味着 $\lim_{x \to x_0^+} F_X(x) = F_X(x_0)$。 4. **概率质量函数 ([[PMF&PDF#概率密度函数-pdf|PMF]]) 关系**(对于离散随机变量):

F_X(x) = \sum_{t \leq x} P(X = t)

5. **概率密度函数 ([[PMF&PDF#概率密度函数-pdf|PDF]]) 关系**(对于连续随机变量):

F_X(x) = \int_{-\infty}^{x} f_X(t) , dt

## Calculation Techniques ### English - **Discrete Random Variable**: To find the CDF of a discrete random variable, sum the probabilities of all outcomes less than or equal to $x$.

F_X(x) = \sum_{t \leq x} P(X = t)

- **Continuous Random Variable**: To find the CDF of a continuous random variable, integrate the PDF from $-\infty$ to $x$.

F_X(x) = \int_{-\infty}^{x} f_X(t) , dt

### 中文 - **离散随机变量**:为了找到离散随机变量的CDF,求所有小于或等于 $x$ 的结果的概率之和。 ==

F_X(x) = \sum_{t \leq x} P(X = t)

- **连续随机变量**:为了找到连续随机变量的CDF,积分从 $-\infty$ 到 $x$ 的PDF。 ==

F_X(x) = \int_{-\infty}^{x} f_X(t) , dt

## Important Points to Remember ### English - The CDF provides a complete description of the probability distribution of a random variable. - For continuous random variables, the derivative of the CDF with respect to $x$ gives the PDF:

f_X(x) = \frac{d}{dx} F_X(x)

P(X = x) = F_X(x) - F_X(x-)

P(a < X \leq b) = F_X(b) - F_X(a)

### 中文 - CDF提供了随机变量的概率分布的完整描述。 - 对于连续随机变量,CDF关于 $x$ 的导数给出了PDF:

f_X(x) = \frac{d}{dx} F_X(x)

P(X = x) = F_X(x) - F_X(x-)

P(a < X \leq b) = F_X(b) - F_X(a)

## Common Mistakes ### English - Confusing the CDF with the PDF. Remember, the CDF is the integral of the PDF for continuous variables and the sum of the PMF for discrete variables. - Forgetting that the CDF is right-continuous. - Misinterpreting the limits: Ensure you correctly understand that $F_X(x)$ approaches 0 as $x$ approaches $-\infty$ and 1 as $x$ approaches $\infty$. ### 中文 - 将CDF与PDF混淆。记住,对于连续变量,CDF是PDF的积分;对于离散变量,CDF是PMF的和。 - 忘记CDF是右连续的。 - 误解极限:确保你正确理解 $F_X(x)$ 当 $x$ 趋近 $-\infty$ 时趋近于0,当 $x$ 趋近 $\infty$ 时趋近于1。 ## Example ### English Given a discrete random variable $X$ with the following PMF:

P(X = x) =

\begin{cases}

0.2 & \text{if } x = 1 \

0.5 & \text{if } x = 2 \

0.3 & \text{if } x = 3 \

0 & \text{otherwise}

\end{cases}

The CDF $F_X(x)$ is calculated as:

F_X(x) =

\begin{cases}

0 & \text{if } x < 1 \

0.2 & \text{if } 1 \leq x < 2 \

0.7 & \text{if } 2 \leq x < 3 \

1 & \text{if } x \geq 3

\end{cases}

### 中文 给定一个离散随机变量 $X$,其PMF如下:

P(X = x) =

\begin{cases}

0.2 & \text{如果 } x = 1 \

0.5 & \text{如果 } x = 2 \

0.3 & \text{如果 } x = 3 \

0 & 其他情况

\end{cases}

CDF $F_X(x)$ 计算如下:

F_X(x) =

\begin{cases}

0 & \text{如果 } x < 1 \

0.2 & \text{如果 } 1 \leq x < 2 \

0.7 & \text{如果 } 2 \leq x < 3 \

1 & \text{如果 } x \geq 3

\end{cases}