IS Math-2015-01

题目来源Problem 1 日期:2024-08-11 题目主题:Math-Linear Algebra-Matrix Analysis and Quadratic Forms

解题思路

这道题涉及几个关键的线性代数概念:特征多项式、矩阵函数、二次型、矩阵对称化、特征值和特征向量、正定性以及二次函数的驻点。我们将逐步解决每个小问,并在需要时使用前面小问的结果。

Solution

1. Characteristic polynomial of

To find the characteristic polynomial of , we need to calculate .

The characteristic polynomial is:

Therefore, the characteristic polynomial of is .

2. Calculation of

Given , we can use the Cayley-Hamilton theorem, which states that every square matrix satisfies its own characteristic equation.

From the characteristic polynomial, we know that:

Multiplying both sides by :

Therefore:

Substituting the value of :

3. Partial derivative of

Let . We can expand this as:

Expanding further:

Now, we can calculate the partial derivatives:

Therefore:

Alternatively, we can express this as:

4. Symmetric matrix , eigenvalues, and eigenvectors

For any vector :

This transformation preserves the value of the quadratic form for all vectors while ensuring that the resulting matrix is symmetric. The symmetry is crucial for guaranteeing real eigenvalues and orthogonal eigenvectors, which are essential for analyzing the properties of the quadratic form.

To find , we need to symmetrize :

Now, we need to find the eigenvalues of . The characteristic polynomial is:

Therefore, the eigenvalues are:

For the eigenvectors:

  1. For : gives

  2. For : gives

  3. For : gives

Normalizing these vectors to make orthogonal:

5. Proving

We know that . Since is symmetric, we can diagonalize it:

where and is orthogonal.

Let . Then:

This proves that for any real vector .

6. Stationary point of

To find the stationary point, we set the gradient to zero:

Solving this linear system:

The solution is:

Therefore, the stationary point of is .

知识点

特征多项式Cayley-Hamilton定理矩阵函数二次型矩阵对称化特征值和特征向量正定矩阵

难点思路

本题的难点在于 Cayley-Hamilton 定理的应用和矩阵的对称化。Cayley-Hamilton 定理允许我们将高次矩阵表达式简化,而矩阵的对称化则是处理二次型问题的关键步骤。

解题技巧和信息

  1. 在处理特征多项式时,可以利用矩阵的结构(如上三角)来简化计算。
  2. 使用 Cayley-Hamilton 定理可以大大简化高次矩阵表达式的计算。
  3. 在处理非对称矩阵的二次型时,将其对称化是一个重要步骤。
  4. 对于二次型的非正定性证明,可以利用特征值的性质。
  5. 在求解线性方程组时,可以利用矩阵的特殊结构(如对称性)来简化计算。

重点词汇

characteristic polynomial 特征多项式

Cayley-Hamilton theorem Cayley-Hamilton 定理

quadratic form 二次型

symmetric matrix 对称矩阵

eigenvalue 特征值

eigenvector 特征向量

positive definiteness 正定性

stationary point 驻点

参考资料

  1. Gilbert Strang, “Linear Algebra and Its Applications”, 4th Edition, Chapter 6
  2. Carl D. Meyer, “Matrix Analysis and Applied Linear Algebra”, Chapter 3 and 7
  3. Roger A. Horn, Charles R. Johnson, “Matrix Analysis”, Chapter 2 and 4