IS CS-2022S-03

题目来源Problem 3 日期:2024-07-01 题目主题:CS-Formal Languages-String Pattern Matching and Finite Automata

解题思路

这道题目涉及到形式语言理论中的几个重要概念:正则语言、有限自动机、上下文无关语言和下推自动机。

在本题中,我们处理字母表 上的字符串及其转换。首先,我们要定义如何将一个字符串 转换成另一个字符串 ,其中 表示字符串的长度。这个转换基于在字符串 中找到的子串 的起始位置,并在这些位置替换成 ,其他位置替换成

我们需要理解给定的函数 的定义,然后应用这些概念来解答问题。每个小问都建立在前面的基础上,逐步深入到更复杂的概念。第四问与第三问紧密相关,我们可以利用第三问的思路来解答第四问。

Solution

1. Compute

Let’s analyze the string babababa and mark the positions where “aba” appears as a subword:

b a b a b a b a
  ^ ^ ^
      ^ ^ ^
          ^ ^ ^

Now, let’s replace these starting positions with ‘t’ and the rest with ‘f’:

2. Express by using a regular expression

To construct this regular expression, we need to consider all possible ways aba can appear in a string:

  1. The string might start with aba:
  2. There might be any number of a’s or b’s before ab:
  3. The string might end with any number of a’s or b’s:

Combining these, we get:

Therefore,

3. Non-deterministic finite automaton for

Let be the given DFA that accepts . Let be the -th figure of word . We can construct an NFA that accepts as follows:

  1. For the transition function :
    • For each and :
      • If and :
        • Add -transition from to
      • If and :
        • Add -transition from to
      • If :
        • Add -transition from to

This NFA simulates the DFA while keeping track of potential matches of during each of the transitions in . When a complete match is found, it accepts ‘t’, otherwise ‘f’.

4. Prove or disprove: If is context-free, then is context-free

This proposition is true. We can prove it by constructing a pushdown automaton (PDA) that accepts , using a similar approach to the NFA construction in Question 3.

Proof Sketch: Let be a PDA that accepts . Let be the -th symbol of word . We can construct a PDA that accepts as follows:

  1. For the transition function :
    • For each :
      • If and :
        • For each , add to
      • If and :
        • For each , add to
      • If and :
        • For each and , add to

Explanation:

  • Similar to the NFA construction in Question 3, the state represents that we are in state of the original PDA and have matched symbols of .
  • The -transitions simulate the original PDA’s transitions for matching the next symbol of .
  • The -transition occurs for positions where is not matched, resetting the match counter to 0.
  • The -transition occurs when we complete a match of , also resetting the match counter to 0.

This PDA simulates the computations of while keeping track of occurrences of and outputting the corresponding string in . Therefore, is context-free.

Note: The key difference between this construction and the one in Question 3 is that we’re now working with a PDA instead of a DFA, which allows us to handle the stack operations necessary for context-free languages. However, the core idea of tracking partial matches of remains the same.

知识点

DFANFAPDA正则表达式上下文无关语言下推自动机

难点思路

  1. 理解函数 的定义及其在字符串和语言上的作用。
  2. 构造接受 的非确定性有限自动机,需要巧妙地结合原 DFA 和模式匹配。
  3. 将 NFA 构造的思路扩展到 PDA,以证明 的上下文无关性。

解题技巧和信息

  1. 在处理形式语言问题时,尝试从简单的例子开始,然后推广到一般情况。
  2. 在构造自动机或文法时,考虑如何将问题的不同方面(如这里的 PDA 转换和模式匹配)结合起来。
  3. 对于复杂的语言操作,考虑如何使用现有的形式语言工具(如 NFA、PDA)来模拟这些操作。
  4. 注意识别问题之间的联系,如第三问和第四问之间的关系,可以帮助简化解题过程。
  5. 在扩展 NFA 到 PDA 时,要注意保持状态转换的基本结构,同时增加对栈操作的处理。

重点词汇

  • deterministic finite automaton (DFA) 确定性有限自动机
  • non-deterministic finite automaton (NFA) 非确定性有限自动机
  • pushdown automaton (PDA) 下推自动机
  • context-free grammar (CFG) 上下文无关文法
  • regular expression 正则表达式
  • -transition -转换

参考资料

  1. Introduction to Automata Theory, Languages, and Computation by John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman. Chapter 2 (Finite Automata), Chapter 3 (Regular Expressions and Languages), Chapter 5 (Context-Free Grammars and Languages), Chapter 6 (Pushdown Automata)
  2. Formal Languages and Automata Theory by C. K. Nagpal. Chapters on Regular Languages, Context-Free Languages, and Pushdown Automata