IS CS-2022S-03
题目来源:Problem 3 日期:2024-07-01 题目主题:CS-Formal Languages-String Pattern Matching and Finite Automata
解题思路
这道题目涉及到形式语言理论中的几个重要概念:正则语言、有限自动机、上下文无关语言和下推自动机。
在本题中,我们处理字母表 和 上的字符串及其转换。首先,我们要定义如何将一个字符串 转换成另一个字符串 ,其中 表示字符串的长度。这个转换基于在字符串 中找到的子串 的起始位置,并在这些位置替换成 ,其他位置替换成 。
我们需要理解给定的函数 和 的定义,然后应用这些概念来解答问题。每个小问都建立在前面的基础上,逐步深入到更复杂的概念。第四问与第三问紧密相关,我们可以利用第三问的思路来解答第四问。
Solution
1. Compute
Let’s analyze the string babababa
and mark the positions where “aba” appears as a subword:
b a b a b a b a
^ ^ ^
^ ^ ^
^ ^ ^
Now, let’s replace these starting positions with ‘t’ and the rest with ‘f’:
2. Express by using a regular expression
To construct this regular expression, we need to consider all possible ways aba
can appear in a string:
- The string might start with
aba
: - There might be any number of a’s or b’s before
ab
: - The string might end with any number of a’s or b’s:
Combining these, we get:
Therefore,
3. Non-deterministic finite automaton for
Let be the given DFA that accepts . Let be the -th figure of word . We can construct an NFA that accepts as follows:
- For the transition function :
- For each and :
- If and :
- Add -transition from to
- If and :
- Add -transition from to
- If :
- Add -transition from to
- If and :
- For each and :
This NFA simulates the DFA while keeping track of potential matches of during each of the transitions in . When a complete match is found, it accepts ‘t’, otherwise ‘f’.
4. Prove or disprove: If is context-free, then is context-free
This proposition is true. We can prove it by constructing a pushdown automaton (PDA) that accepts , using a similar approach to the NFA construction in Question 3.
Proof Sketch: Let be a PDA that accepts . Let be the -th symbol of word . We can construct a PDA that accepts as follows:
- For the transition function :
- For each :
- If and :
- For each , add to
- If and :
- For each , add to
- If and :
- For each and , add to
- If and :
- For each :
Explanation:
- Similar to the NFA construction in Question 3, the state represents that we are in state of the original PDA and have matched symbols of .
- The -transitions simulate the original PDA’s transitions for matching the next symbol of .
- The -transition occurs for positions where is not matched, resetting the match counter to 0.
- The -transition occurs when we complete a match of , also resetting the match counter to 0.
This PDA simulates the computations of while keeping track of occurrences of and outputting the corresponding string in . Therefore, is context-free.
Note: The key difference between this construction and the one in Question 3 is that we’re now working with a PDA instead of a DFA, which allows us to handle the stack operations necessary for context-free languages. However, the core idea of tracking partial matches of remains the same.
知识点
难点思路
- 理解函数 和 的定义及其在字符串和语言上的作用。
- 构造接受 的非确定性有限自动机,需要巧妙地结合原 DFA 和模式匹配。
- 将 NFA 构造的思路扩展到 PDA,以证明 的上下文无关性。
解题技巧和信息
- 在处理形式语言问题时,尝试从简单的例子开始,然后推广到一般情况。
- 在构造自动机或文法时,考虑如何将问题的不同方面(如这里的 PDA 转换和模式匹配)结合起来。
- 对于复杂的语言操作,考虑如何使用现有的形式语言工具(如 NFA、PDA)来模拟这些操作。
- 注意识别问题之间的联系,如第三问和第四问之间的关系,可以帮助简化解题过程。
- 在扩展 NFA 到 PDA 时,要注意保持状态转换的基本结构,同时增加对栈操作的处理。
重点词汇
- deterministic finite automaton (DFA) 确定性有限自动机
- non-deterministic finite automaton (NFA) 非确定性有限自动机
- pushdown automaton (PDA) 下推自动机
- context-free grammar (CFG) 上下文无关文法
- regular expression 正则表达式
- -transition -转换
参考资料
- Introduction to Automata Theory, Languages, and Computation by John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman. Chapter 2 (Finite Automata), Chapter 3 (Regular Expressions and Languages), Chapter 5 (Context-Free Grammars and Languages), Chapter 6 (Pushdown Automata)
- Formal Languages and Automata Theory by C. K. Nagpal. Chapters on Regular Languages, Context-Free Languages, and Pushdown Automata