2023
Problem 1
Answer the following questions.
(1) The function with real variables is defined as follows:
Show that the set of solutions of the equation is a line passing through two points on the plane, where .
(2) Find the value of the determinant
in factored form.
(3) Show that there is a unique curve passing through three points on the plane, where are constants and are all distinct.
(4) The curve in (3) can be represented in the form , where each of does not depend on . Find .
(5) Let us represent a curve passing through five points on the plane in the form , where each of does not depend on and are all distinct. Find .
回答以下问题。
(1) 带有实变量 的函数 定义如下:
证明方程 的解集是通过 平面上两点 的一条直线,其中 。
(2) 求下列行列式的值
的因式分解形式。
(3) 证明存在唯一的曲线 ,通过 平面上的三点 ,其中 是常数,且 彼此不同。
(4) (3) 中的曲线可以表示为 的形式,其中 均不依赖于 。求 。
(5) 设曲线 通过 平面上的五个点 ,并表示为 的形式,其中 均不依赖于 ,且 彼此不同。求 。
Problem 2
Let be a real independent variable, and let and be real-valued functions. Answer the following questions.
(1) Find all solutions of the following ordinary differential equation
which are bounded when .
(2) Find all solutions and of the following ordinary differential equations
which are bounded when .
(3) By converting the following ordinary differential equation
to a linear ordinary differential equation with an appropriate change of variable, find the solution that satisfies .
设 为实独立变量, 和 为实值函数。回答以下问题。
(1) 求解下列常微分方程的所有解
这些解在 时是有界的。
(2) 求解下列常微分方程的所有解 和
这些解在 时是有界的。
(3) 通过对下列常微分方程
进行适当的变量变换以将其转换为线性常微分方程,求解满足 的 。
Problem 3
Let us randomly place circle stones and square stones one by one in a line from left to right. The circle and square stones are placed with probability and , respectively, according to the independent and identical distribution, where . The placement stops right after square stones are placed in a row, where is a positive integer. We show examples of the lines for as follows.
Let be a random variable which represents the number of the stones after stopping the placement. For the case of the lines shown above, and for lines 1 and 2, respectively.
Here, we consider intermediate states during the placement. Let be a non-negative integer and let be a state of a line where there are square stones in a row from the right end. For instance, we consider the following lines for .
Since we are considering the case of , lines 3 and 4 are not stopped yet. Line 3 is in state since there are 2 square stones in a row from the right end. Line 4 is in state since there is no square stone at the right end. Let be the probability that the stopping condition is met after placing stones starting from state , where is a non-negative integer. We define the following generating function for .
Answer the following questions.
(1) Calculate the mean and variance of for .
(2) Obtain the recurrence relation that satisfies.
(3) Obtain as a function of , , , and .
(4) Calculate the mean of .
我们从左到右逐一随机放置圆形石头 和方形石头 。圆形和方形石头分别以 和 的概率放置,遵循独立且相同的分布,其中 。在放置了 个方形石头连续排列之后,放置将停止,其中 是一个正整数。以下是 时的示例行。
设 为一个随机变量,表示停止放置后石头的数量。在上述行的情况下,线 1 的 ,线 2 的 。
在这里,我们考虑放置过程中的中间状态。设 为一个非负整数, 为一个状态,表示从右端起有 个方形石头连续排列。例如,我们考虑 时的以下行。
由于我们考虑的是 的情况,线 3 和线 4 尚未停止。线 3 处于状态 ,因为从右端起有 2 个方形石头连续排列。线 4 处于状态 ,因为右端没有方形石头。设 为在从状态 开始放置 个石头后满足停止条件的概率,其中 为非负整数。我们定义以下 的生成函数 。
回答以下问题。
(1) 计算 时 的均值和方差。
(2) 求出 满足的递推关系。
(3) 将 表示为 , , 和 的函数。
(4) 计算 的均值。