Second-Order ODE | 二阶常微分方程
Definition | 定义
A second-order ordinary differential equation (ODE) is a differential equation of the form:
二阶常微分方程的形式为:
where is the second derivative of with respect to , is the first derivative, and are given functions, and is a known function.
其中 是 对 的二阶导数, 是一阶导数, 和 是已知函数, 是已知函数。
Types of Second-Order ODEs | 二阶常微分方程的类型
-
Homogeneous Second-Order ODE | 齐次二阶常微分方程
If , the ODE is called homogeneous:
若 ,则该方程称为齐次方程:
\mathbf{y}''(x) + p(x)\mathbf{y}'(x) + q(x)\mathbf{y}(x) = g(x)
$$
Solution Methods | 解法
1. Homogeneous Equations | 齐次方程
For homogeneous second-order ODEs:
对于齐次二阶常微分方程:
Characteristic Equation | 特征方程
-
Assume a solution of the form 设解形式为
-
Substitute into the ODE to get the characteristic equation: 将 代入方程得到特征方程:
- Solve for :
解 :
- If and are real and distinct: 若 和 为实且不同:
- If 若 :
- If and are complex: 若 和 为复数:
$$
\mathbf{y}(x) = e^{\alpha x}(C_1 \cos(\beta x) + C_2 \sin(\beta x))
$$
2. Non-Homogeneous Equations | 非齐次方程
For non-homogeneous second-order ODEs:
对于非齐次二阶常微分方程:
Particular Solutions of Non-Homogeneous Second-Order ODEs | 非齐次二阶常微分方程的特解
When solving a non-homogeneous second-order ODE, the particular solution can be found using different methods depending on the form of . Here, we discuss some common approaches:
在求解非齐次二阶常微分方程时,特解 的求法取决于 的形式。以下是一些常见的方法:
Method of Undetermined Coefficients | 未定系数法
This method is applicable when is a polynomial, exponential function, sine or cosine, or a combination of these.
当 是多项式、指数函数、正弦或余弦函数,或这些的组合时,可以使用未定系数法。
Steps | 步骤
- Identify the form of | 确定 的形式
where and are polynomials.
其中 和 是多项式。
-
Assume a particular solution with undetermined coefficients | 假设具有未定系数的特解
- For a polynomial :
- For an exponential function :
- For a sine or cosine function or :
- For a combination like :
-
Substitute into the non-homogeneous ODE | 将 代入非齐次方程
-
Solve for the undetermined coefficients | 解出未定系数
Example | 示例
Given:
Assume a particular solution:
Substitute into the ODE:
Clearly, the assumption must be modified since it yields a contradiction. Instead, assume:
Substitute and solve for :
Thus, the particular solution is:
Variation of Parameters | 参数变换法
This method is applicable when is not suitable for the method of undetermined coefficients, or when the form of is more complicated.
当 不适用于未定系数法,或 的形式更复杂时,可以使用参数变换法。
Steps | 步骤
- Solve the corresponding homogeneous equation | 解对应的齐次方程
-
Find the fundamental solutions and | 找到基本解 和
-
Form the particular solution as | 特解形式为
- Determine and by solving | 通过解以下方程确定 和
- Integrate to find and | 积分求 和
- Combine and with and to get | 将 和 与 和 结合得到
Example | 示例
Given:
Solve the homogeneous equation:
The fundamental solutions are:
Particular solution:
Determine and :
Solve for and :
Integrate to find and :
Thus, the particular solution is: