Second-Order ODE | 二阶常微分方程

Definition | 定义

A second-order ordinary differential equation (ODE) is a differential equation of the form:

二阶常微分方程的形式为:

where is the second derivative of with respect to , is the first derivative, and are given functions, and is a known function.

其中 的二阶导数, 是一阶导数, 是已知函数, 是已知函数。

Types of Second-Order ODEs | 二阶常微分方程的类型

  1. Homogeneous Second-Order ODE | 齐次二阶常微分方程

    If , the ODE is called homogeneous:

    ,则该方程称为齐次方程:

2. **Non-Homogeneous Second-Order ODE | 非齐次二阶常微分方程** If $g(x) \neq 0$, the ODE is called non-homogeneous: 若 $g(x) \neq 0$,则该方程称为非齐次方程:
   \mathbf{y}''(x) + p(x)\mathbf{y}'(x) + q(x)\mathbf{y}(x) = g(x)

$$

Solution Methods | 解法

1. Homogeneous Equations | 齐次方程

For homogeneous second-order ODEs:

对于齐次二阶常微分方程:

Characteristic Equation | 特征方程

  1. Assume a solution of the form 设解形式为

  2. Substitute into the ODE to get the characteristic equation: 将 代入方程得到特征方程:

  1. Solve for : 解
    • If and are real and distinct: 若 为实且不同:
  • If
  • If and are complex: 若 为复数:
$$

 \mathbf{y}(x) = e^{\alpha x}(C_1 \cos(\beta x) + C_2 \sin(\beta x))

$$

2. Non-Homogeneous Equations | 非齐次方程

For non-homogeneous second-order ODEs:

对于非齐次二阶常微分方程:

Particular Solutions of Non-Homogeneous Second-Order ODEs | 非齐次二阶常微分方程的特解

When solving a non-homogeneous second-order ODE, the particular solution can be found using different methods depending on the form of . Here, we discuss some common approaches:

在求解非齐次二阶常微分方程时,特解 的求法取决于 的形式。以下是一些常见的方法:

Method of Undetermined Coefficients | 未定系数法

This method is applicable when is a polynomial, exponential function, sine or cosine, or a combination of these.

是多项式、指数函数、正弦或余弦函数,或这些的组合时,可以使用未定系数法。

Steps | 步骤
  1. Identify the form of | 确定 的形式

where and are polynomials.

其中 是多项式。

  1. Assume a particular solution with undetermined coefficients | 假设具有未定系数的特解

    • For a polynomial :
  • For an exponential function :
  • For a sine or cosine function or :
  • For a combination like :
  1. Substitute into the non-homogeneous ODE | 将 代入非齐次方程

  2. Solve for the undetermined coefficients | 解出未定系数

Example | 示例

Given:

Assume a particular solution:

Substitute into the ODE:

Clearly, the assumption must be modified since it yields a contradiction. Instead, assume:

Substitute and solve for :

Thus, the particular solution is:

Variation of Parameters | 参数变换法

This method is applicable when is not suitable for the method of undetermined coefficients, or when the form of is more complicated.

不适用于未定系数法,或 的形式更复杂时,可以使用参数变换法。

Steps | 步骤
  1. Solve the corresponding homogeneous equation | 解对应的齐次方程
  1. Find the fundamental solutions and | 找到基本解

  2. Form the particular solution as | 特解形式为

  1. Determine and by solving | 通过解以下方程确定
  1. Integrate to find and | 积分求
  1. Combine and with and to get | 将 结合得到
Example | 示例

Given:

Solve the homogeneous equation:

The fundamental solutions are:

Particular solution:

Determine and :

Solve for and :

Integrate to find and :

Thus, the particular solution is: