IS CS-2020S2-06
题目来源:Problem 6 日期:2024-08-11 题目主题:Math/CS-概率论与统计-正态分布与 EM 算法
解题思路
这道题目涉及到正态分布的基本性质、条件分布以及使用 EM 算法进行参数估计的问题。首先,我们需要计算复合随机变量的期望和方差,然后推导出条件分布,再进一步推导联合概率密度函数,最后,运用 EM 算法对缺失数据进行参数估计。
Solution
Question 1
The random variable is defined as , where and . Since and are independent, we can calculate the expectation and variance of as follows:
-
Expectation of :
-
Variance of :
Question 2
To find the conditional distribution of given , note that , where and . The joint distribution of is bivariate normal, which implies that the conditional distribution is also normal.
-
Expectation of :
-
Variance of :
This can be derived using the properties of conditional distributions for bivariate normal distributions.
Question 3
The joint probability density function for the random variables and can be expressed as the product of the marginal distributions of and the conditional distributions of given :
Expanding this, we get:
Question 4
Part (i)
The expectation is given by:
Simplifying further using the properties of the expectation for a normal distribution:
Part (ii)
The update rule for in the EM algorithm is obtained by maximizing the expression found in part (i):
Solving this for and , we find:
This update rule depends on the observed data and the estimates obtained from the conditional expectation.
知识点
难点思路
推导条件分布涉及到二元正态分布的性质,尤其是推导条件期望和方差时,需要对协方差矩阵有深刻理解。EM 算法的难点在于构建对数似然函数的期望,并通过优化找到参数的更新规则。
解题技巧和信息
- 条件分布:对于二元正态分布,条件分布仍然是正态分布,且其参数可以通过边际分布的参数计算得到。
- EM 算法:EM 算法通过最大化对数似然函数的期望来迭代更新参数,对于缺失数据的问题尤为有效。
- 最大似然估计:通常情况下,EM 算法能够保证参数的渐进一致性,即经过多次迭代,参数估计会收敛到真值。
重点词汇
- Expectation-Maximization (EM) Algorithm: 期望最大化算法
- Conditional distribution: 条件分布
- Maximum likelihood estimation: 最大似然估计
- Normal distribution: 正态分布
参考资料
- Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer. Chapter 9: Mixture Models and EM.
- Casella, G., & Berger, R. L. (2001). Statistical Inference (2nd ed.). Duxbury. Chapter 7: Estimation.