Linear Mapping / 线性映射
Linear Mapping / 线性映射
A linear mapping is a function that satisfies for all and all scalars .
线性映射 是一个满足 的函数,其中 ,。
Surjectivity / 满射
A function is surjective (onto) if for every , there exists at least one such that .
如果对每个 ,至少存在一个 使得 ,则函数 是满射(到射)的。
Injectivity / 单射
A function is injective (one-to-one) if for every , implies .
如果对每个 , 蕴含 ,则函数 是单射的。
Bijectivity / 双射
A function is bijective if it is both injective and surjective, meaning that for every , there exists a unique such that .
如果函数 既是单射又是满射,则称其为双射,这意味着对每个 ,存在唯一的 使得 。