Linear Mapping / 线性映射

Linear Mapping / 线性映射

A linear mapping is a function that satisfies for all and all scalars .

线性映射 是一个满足 的函数,其中

Surjectivity / 满射

A function is surjective (onto) if for every , there exists at least one such that .

如果对每个 ,至少存在一个 使得 ,则函数 是满射(到射)的。

Injectivity / 单射

A function is injective (one-to-one) if for every , implies .

如果对每个 蕴含 ,则函数 是单射的。

Bijectivity / 双射

A function is bijective if it is both injective and surjective, meaning that for every , there exists a unique such that .

如果函数 既是单射又是满射,则称其为双射,这意味着对每个 ,存在唯一的 使得