CBMS-2018-11

题目来源:[[做题/文字版题库/CBMS/2018#Question 11|2018#Question 11]] 日期:2024-07-27 题目主题:CS-概率论-顺序统计量

解题思路

我们需要找到顺序统计量的分布函数和期望值。主要知识点包括概率分布函数、累积分布函数、联合概率分布、以及期望值计算。解题过程中要利用独立随机变量的性质及其分布特性。

Solution

1. Distribution Function of

To find the distribution function of the smallest order statistic , we consider:

Since is the smallest of the , means that all . Thus:

We know that if and only if all , so:

Thus, the distribution function of is:

2. Distribution Function of

To find the distribution function of the largest order statistic , we consider:

Since is the largest of the , means that at least one . Thus:

3. Distribution Function of

To find the distribution function of the -th order statistic , we need to determine the probability . This represents the probability that the -th smallest value among is less than or equal to .

Step 1: Basic Concepts and Binomial Probability

Since are independent and identically distributed, the probability that any particular is less than or equal to is . Similarly, the probability that is greater than is .

Step 2: Using Binomial Distribution

We can think of this as a binomial distribution problem. We need to consider the event that at least out of values are less than or equal to . Mathematically, this can be expressed as:

Here, is the binomial coefficient, representing the number of ways to choose successes (values ) out of trials.

4. Expectation of when is the Uniform Distribution over

If is the uniform distribution over , then for . Therefore:

The expectation of is given by:

where is the derivative of :

Therefore:

This is a Beta distribution integral:

Using the Beta function property, we get:

Thus:

知识点

顺序统计量概率分布函数期望值 Beta分布

难点思路

第 3 小问关于任意 阶顺序统计量的分布函数需要理解 Binomial 分布的性质并进行累加,这是一个较难点。

解题技巧和信息

对于顺序统计量,了解如何通过分布函数 来表示最小和最大顺序统计量的分布函数非常重要。对于均匀分布的情况,可以利用 Beta 分布性质简化期望值计算。

重点词汇

  • order statistic 顺序统计量
  • distribution function 分布函数
  • expectation 期望值
  • uniform distribution 均匀分布

参考资料

  1. “Probability and Statistics” by Morris H. DeGroot and Mark J. Schervish, Chapter 5.
  2. “A First Course in Probability” by Sheldon Ross, Chapter 8.