2016

Problem 1

The tribonacci numbers are defined for non-negative integers as follows.

Answer the following questions.

  1. Find the matrix that satisfies Eq. (1.1) for all non-negative integers .
  1. Find the rank and the characteristic equation, i.e., the equation that eigenvalues satisfy, of the matrix .

  2. Let denote the eigenvalues of the matrix . Express an eigenvector corresponding to each of the eigenvalues using .

  3. Prove that the matrix has only one real number eigenvalue. Letting correspond to this eigenvalue, prove that .

  4. Prove that can be expressed as using constant complex numbers . You do not need to find values of explicitly.

  5. Prove .


三斐波那契数列 定义为对非负整数 如下。

回答以下问题。

  1. 求满足方程 (1.1) 对所有非负整数 成立的矩阵
  1. 求矩阵 的秩和特征方程,即特征值满足的方程。

  2. 表示矩阵 的特征值。用 表示对应于每个特征值的特征向量。

  3. 证明矩阵 只有一个实数特征值。令 对应于该特征值,证明

  4. 证明 可以表示为 ,其中 为常量复数。你不需要明确找到 的值。

  5. 证明


Problem 2

Consider a twice differentiable function in an plane which connects two points and . Let be the outer surface area of the cylindrical object created by rotation of the curve about the axis. Answer the following questions.

  1. Prove that the surface area is given by

where .

  1. Let the curve satisfy the following Euler–Lagrange equation for arbitrary :

Considering Eq. (2.3) along with , prove that the following relation holds:

Here is a constant.

  1. Express a differential equation satisfied by the curve using .

  2. Represent the curve as a function of and . Obtain an equation which should be satisfied by the constant .


考虑一个二维平面上的二阶可微函数 ,它连接了两个点 。设 为通过旋转曲线 轴所形成的圆柱体的外表面积。回答以下问题。

  1. 证明表面积 由下式给出:

其中

  1. 令曲线 满足以下任意 的欧拉-拉格朗日方程:

结合方程 (2.3) 和 ,证明以下关系成立:

其中 为常数。

  1. 表示曲线 满足的微分方程。

  2. 将曲线 表示为 的函数。求出常数 应满足的方程。


Problem 3

Answer the following questions.

  1. Calculate the number of possible ways to distribute equivalent balls to distinguishable boxes such that each box contains at least one ball, where and .

    Next, consider placing black balls and white balls in a line uniformly at random. A run is defined to be a succession of the same color. Let be the number of runs of black balls and be the number of runs of white balls. Assume that , , , and . For example, the sequence

corresponds to and .

  1. Calculate the total number of arrangements when we do not distinguish among balls of the same color.

  2. Calculate the probability that the number of runs of black balls is and the number of runs of white balls is .

  3. Calculate the probability that the number of runs of black balls is .

  4. Using , show that the following equations hold.

  1. Calculate the expected value and the variance of . Calculate and supposing that and , where is a real constant.

回答以下问题。

  1. 计算将 个相同的球分配到 个可区分的盒子中的可能方式的数量,使得每个盒子中至少包含一个球,其中 ,且

    接下来,考虑将 个黑球和 个白球随机均匀地排列在一条线上。一个连续相同颜色的序列称为一个 “run”。令 表示黑球的 “run” 的数量, 表示白球的 “run” 的数量。假设 ,且 。例如,序列

对应于

  1. 计算当我们不区分相同颜色的球时的排列总数。

  2. 计算概率 ,即黑球的 “run” 的数量为 ,白球的 “run” 的数量为

  3. 计算概率 ,即黑球的 “run” 的数量为

  4. 使用 ,证明以下等式成立。

  1. 计算 的期望值 和方差 。计算 ,假设 ,且 ,其中 为常数。