2016
Problem 1
The tribonacci numbers are defined for non-negative integers as follows.
Answer the following questions.
- Find the matrix that satisfies Eq. (1.1) for all non-negative integers .
-
Find the rank and the characteristic equation, i.e., the equation that eigenvalues satisfy, of the matrix .
-
Let denote the eigenvalues of the matrix . Express an eigenvector corresponding to each of the eigenvalues using .
-
Prove that the matrix has only one real number eigenvalue. Letting correspond to this eigenvalue, prove that .
-
Prove that can be expressed as using constant complex numbers . You do not need to find values of explicitly.
-
Prove .
三斐波那契数列 定义为对非负整数 如下。
回答以下问题。
- 求满足方程 (1.1) 对所有非负整数 成立的矩阵 。
-
求矩阵 的秩和特征方程,即特征值满足的方程。
-
设 表示矩阵 的特征值。用 表示对应于每个特征值的特征向量。
-
证明矩阵 只有一个实数特征值。令 对应于该特征值,证明 。
-
证明 可以表示为 ,其中 为常量复数。你不需要明确找到 的值。
-
证明 。
Problem 2
Consider a twice differentiable function in an plane which connects two points and . Let be the outer surface area of the cylindrical object created by rotation of the curve about the axis. Answer the following questions.
- Prove that the surface area is given by
where .
- Let the curve satisfy the following Euler–Lagrange equation for arbitrary :
Considering Eq. (2.3) along with , prove that the following relation holds:
Here is a constant.
-
Express a differential equation satisfied by the curve using .
-
Represent the curve as a function of and . Obtain an equation which should be satisfied by the constant .
考虑一个二维平面上的二阶可微函数 ,它连接了两个点 和 。设 为通过旋转曲线 绕 轴所形成的圆柱体的外表面积。回答以下问题。
- 证明表面积 由下式给出:
其中 。
- 令曲线 满足以下任意 的欧拉-拉格朗日方程:
结合方程 (2.3) 和 ,证明以下关系成立:
其中 为常数。
-
用 表示曲线 满足的微分方程。
-
将曲线 表示为 和 的函数。求出常数 应满足的方程。
Problem 3
Answer the following questions.
-
Calculate the number of possible ways to distribute equivalent balls to distinguishable boxes such that each box contains at least one ball, where and .
Next, consider placing black balls and white balls in a line uniformly at random. A run is defined to be a succession of the same color. Let be the number of runs of black balls and be the number of runs of white balls. Assume that , , , and . For example, the sequence
corresponds to and .
-
Calculate the total number of arrangements when we do not distinguish among balls of the same color.
-
Calculate the probability that the number of runs of black balls is and the number of runs of white balls is .
-
Calculate the probability that the number of runs of black balls is .
-
Using , show that the following equations hold.
- Calculate the expected value and the variance of . Calculate and supposing that and , where is a real constant.
回答以下问题。
-
计算将 个相同的球分配到 个可区分的盒子中的可能方式的数量,使得每个盒子中至少包含一个球,其中 ,且 。
接下来,考虑将 个黑球和 个白球随机均匀地排列在一条线上。一个连续相同颜色的序列称为一个 “run”。令 表示黑球的 “run” 的数量, 表示白球的 “run” 的数量。假设 ,,,且 。例如,序列
对应于 和 。
-
计算当我们不区分相同颜色的球时的排列总数。
-
计算概率 ,即黑球的 “run” 的数量为 ,白球的 “run” 的数量为 。
-
计算概率 ,即黑球的 “run” 的数量为 。
-
使用 ,证明以下等式成立。
- 计算 的期望值 和方差 。计算 和 ,假设 ,且 ,其中 为常数。