CBMS-2016-07

题目来源:[[文字版题库/CBMS/2016#Problem 7|2016#Problem 7]] 日期:2024-07-31 题目主题:CS-算法-递归时间复杂度

Solution

Let’s analyze the time complexity for each recurrence relation separately.

1.

For this recurrence, we use the Master Theorem. The recurrence is of the form .

  • Here, , , and .
  • We need to compare with .

First, compute :

According to the Master Theorem:

  • If where , then .
  • If , then .
  • If where and for some and sufficiently large , then .

In this case, and .

Since , we have .

Thus, .

2.

To solve this recurrence, we can use the iterative method:

When :

The sum is a geometric series:

Thus, can be approximated by:

Thus, .

3.

This is a non-homogeneous linear recurrence relation. We can use the iterative method:

The sum is:

And the sum is:

Therefore:

Thus, .

4.

For this recurrence, we again use the Master Theorem. The recurrence is of the form .

  • Here, , , and .
  • We need to compare with .

First, compute :

According to the Master Theorem:

  • If where , then .
  • If , then .
  • If where and for some and sufficiently large , then .

In this case, and .

Since is :

Thus, .

5.

For this recurrence, we use the Master Theorem. The recurrence is of the form .

  • Here, , , and .
  • We need to compare with .

First, compute :

According to the Master Theorem:

  • If where , then .
  • If , then .
  • If where and for some and sufficiently large , then .

In this case, and .

Since , we have:

Thus, .

Summary

  • Recurrence 1: , .
  • Recurrence 2: , .
  • Recurrence 3: , .
  • Recurrence 4: , .
  • Recurrence 5: , .

知识点

主定理递归复杂度分析

解题技巧和信息

对于递归方程的时间复杂度分析,使用主定理是一个强大的工具。主定理适用于形如 的递归式。需要注意 的取值以及 的比较来判断最终的时间复杂度。对于不能用主定理的递归式,可以使用展开迭代法逐步分析。

重点词汇

  • Recurrence Relation 递归关系
  • Master Theorem 主定理
  • Time Complexity 时间复杂度
  • Logarithm 对数
  • Big O Notation 大 O 符号

参考资料

  1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, 3rd Edition. MIT Press, Chapter 4.