2013
Problem 1
Answer the following questions.
(1) For , there exists a pair of integer and constant matrix satisfying
for any . Among such pairs, find a pair with the smallest by examining cases in order.
(2) The numbers in question (1) can be represented by , where and are the pair obtained in question (1), and and are real constant vectors. Find such a pair of and .
(3) Define by , where and are the ones obtained in questions (1) and (2). Find the rank of the following matrix together with the derivation:
(4) Define a function , where is a scalar variable, , and are the ones obtained in questions (1) and (2), and is a identity matrix. Let be the Taylor series of at . Represent , by using , together with the derivation. Use the following formula of diagonal matrix if necessary:
回答以下问题。
(1) 对于 ,存在一对整数 和 常数矩阵 满足
对任意 。在这种情况下,按顺序依次检查 ,找到使 最小的对。
(2) 问题 (1) 中的数值 可以表示为 ,其中 和 是在问题 (1) 中获得的, 和 是实常数向量。找到这样的一对 和 。
(3) 定义 为 ,其中 和 是在问题 (1) 和 (2) 中获得的。找到下列矩阵 的秩,并给出推导过程:
(4) 定义函数 ,其中 是一个标量变量, 和 是在问题 (1) 和 (2) 中获得的, 是 单位矩阵。令 为 在 处的泰勒级数。用 , 表示 ,,并给出推导过程。如有必要,使用以下对角矩阵 的公式:
Problem 2
Let be the set of functions on the real line with and . For , we define by
We are interested in a function in that minimizes . Answer the following questions, where every function considered in this problem is assumed to be sufficiently smooth everywhere.
- Show that, for any and ,
holds.
- Consider satisfying
for any . Derive an ordinary differential equation that should satisfy. If necessary, the following property may be used.
If function satisfies
for any function with , then for .
-
Explain the reason why the solution of the ordinary differential equation obtained in question (2) minimizes .
-
Find the solution of the ordinary differential equation obtained in question (2).
设 为实线上函数 的集合,并且满足 和 。对于 ,我们定义 如下:
我们对 中最小化 的函数感兴趣。回答以下问题,其中每个问题中考虑的函数都假设在各处足够光滑。
- 证明对于任意的 和 ,
成立。
- 考虑满足下式的 :
对于任意的 ,推导 应该满足的常微分方程。如果有必要,可以使用以下性质:
如果函数 满足
对于任意的函数 ,并且 ,那么 对于 。
-
解释为什么在问题 (2) 中得到的常微分方程的解会最小化 。
-
求解在问题 (2) 中得到的常微分方程。
Problem 3
Initially, a bag contains only a black ball. Consider the repetition of the following operation.
Operation A: A ball is randomly drawn from the bag. If the color of the ball is black, put it back with a ball of a new non-black color. Otherwise, put it back with another ball of the same color.
Note that a ball is not distinguishable from the others until it is drawn from the bag. Answer the following questions.
-
Consider the case where Operation A is repeated 3 times. Find the probability that the number of colors of the balls in the bag (black is not counted) is 2 and 3, respectively.
-
Consider the case where Operation A is repeated 4 times. Find the probability that the number of colors of the balls in the bag (black is not counted) is 3.
-
Consider the case where Operation A is repeated times. Show that is the probability that the number of colors of the balls in the bag (black is not counted) is 1.
-
Consider the case where Operation A is repeated times. Find the probability that the number of colors of the balls in the bag (black is not counted) is . If necessary, use defined by the following equation.
-
Find the minimum number of trials of Operation A such that the probability exceeds 35% for the case where the number of colors of the balls in the bag (black is not counted) is at least 3. Explain the derivation.
-
Show that for all natural numbers , defined in question (4) satisfies the following equality.
最初,一个袋子里只有一个黑球。考虑重复以下操作。
操作 A:随机从袋子里抽出一个球。如果球的颜色是黑色的,就把它和一个新颜色(非黑色)的球一起放回去。否则,用另一个相同颜色的球放回去。
注意,球在从袋子里抽出来之前是无法区分的。回答以下问题。
-
考虑操作 A重复 3 次的情况。求袋中球的颜色数(不计黑色)为 2 和 3 的概率。
-
考虑操作 A重复 4 次的情况。求袋中球的颜色数(不计黑色)为 3 的概率。
-
考虑操作 A重复 次的情况。证明袋中球的颜色数(不计黑色)为 1 的概率为 。
-
考虑操作 A重复 次的情况。求袋中球的颜色数(不计黑色)为 的概率 。如果有必要,使用如下方程定义的 。
-
求出操作 A的试验次数的最小值,使得袋中球的颜色数(不计黑色)至少为 3 的概率超过 35%。解释推导过程。
-
证明对于所有自然数 ,问题 (4) 中定义的 满足以下等式。