2014

Problem 1

A real square matrix is said to be symmetric if it satisfies the condition , where denotes the transpose of . Answer the following questions.

  1. Find all the eigenvalues and their corresponding eigenvectors of the symmetric matrix given as follows.
  1. Prove that if a real square matrix is symmetric, then all of its eigenvalues are real.

  2. Even if all the eigenvalues of a real square matrix are real, is not necessarily symmetric. Provide a concrete example of such a matrix .

  3. Let be a non-zero three-dimensional real vector. For the symmetric matrix defined in question (1), let us define the function as follows.

Here, denotes the transpose of . Moreover, the function is defined as follows.

Show that the following equation holds.

  1. Using eigenvalue decomposition of the symmetric matrix defined in question (1), show that the following inequality holds for the function defined in question (4).

一个实方阵 如果满足条件 ,则称其为对称矩阵,其中 表示 的转置。回答以下问题。

  1. 求出如下对称矩阵 的所有特征值及其对应的特征向量。
  1. 证明如果一个实方阵 是对称的,那么它的所有特征值都是实数。

  2. 即使一个实方阵 的所有特征值都是实数, 也不一定是对称的。提供一个这样的矩阵 的具体例子。

  3. 为一个非零的三维实向量。对于问题 (1) 中定义的对称矩阵 ,定义函数 如下。

其中 表示 的转置。此外,函数 定义如下。

证明下式成立。

  1. 使用问题 (1) 中定义的对称矩阵 的特征值分解,证明问题 (4) 中定义的函数 满足以下不等式。

Problem 2

For real functions and defined on , let

Answer the following questions.

  1. Calculate , , , , , and for polynomials defined by

You may use the fact that holds for any odd function .

  1. Let be a polynomial of degree with respect to (with the coefficient of not being 0), and consider a series of polynomial functions . In what follows, we say a set of functions satisfies the orthonormal condition when

holds for any integers and in .

(2-1) Using , , and defined in question (1), find a set of functions satisfying the orthonormal condition.

(2-2) Find a function so that a set of functions satisfies the orthonormal condition, where , , and are the functions derived in question (2-1).

  1. Suppose that a set of functions satisfies the orthonormal condition. Then, in a manner similar to question (2-2), a function can be found such that the set of functions satisfies the orthonormal condition. Show that is unique except the sign, following the steps below.

    (3-1) Generally, a polynomial of degree can be written as

Express the coefficients with , and .

(3-2) Suppose that there exists a polynomial function of degree different from such that the set of functions also satisfies the orthonormal condition. Then prove that by considering the case in question (3-1).


对于定义在 上的实函数 ,定义

回答以下问题。

  1. 计算多项式定义下的

可以使用以下事实: 对任何奇函数 都成立。

  1. 为关于 次多项式( 的系数不为 0),并考虑一系列多项式函数 。下文中,当满足以下条件时,我们说 个函数 满足正交归一化条件。

条件对任何整数 内成立。

(2-1) 使用问题 (1) 中定义的 ,找到满足正交归一化条件的函数集

(2-2) 找到一个函数 ,使得函数集 满足正交归一化条件,其中 为问题 (2-1) 中导出的函数。

  1. 假设函数集 满足正交归一化条件。然后,以类似于问题 (2-2) 的方式,可以找到一个函数 ,使得函数集 满足正交归一化条件。按以下步骤证明 是唯一的,除了符号外。

    (3-1) 通常,一个 次多项式 可以表示为

表示系数

(3-2) 假设存在一个与 不同的 次多项式函数 ,使得函数集 也满足正交归一化条件。通过考虑问题 (3-1) 中的 ,证明


Problem 3

Let be a sequence of independent random variables. Each takes value 1 with probability and value 0 with probability . Answer the following questions.

  1. With regards to the sequence of random variables , answer the following questions.

    1.1 Calculate the variance of , and obtain the probability that .

    1.2 Let be the smallest integer such that . For example, if is , then and . Obtain the probability that .

  2. A sequence of random variables is defined using as follows.

    Assume , and answer the following questions.

    2.1 Show that .

    2.2 Obtain the expected value and the variance of .

    2.3 Let and . Assuming , obtain the maximum value of that satisfies the condition .

  3. A sequence of random variables is defined using as follows. If is the -th pair of adjacent variables in such that , then is defined by . The index starts with 0, so if is the first such pair, then . For example, if is , then .

    Let be the probability that . Obtain .


是一个独立随机变量序列。每个 以概率 取值 1,以概率 取值 0。回答以下问题。

  1. 关于随机变量序列 ,回答以下问题。

    1. 计算 的方差,并求出 的概率。

    2. 是使得 的最小整数。例如,如果 ,那么 并且 。求 的概率。

  2. 使用 定义随机变量序列 如下。

    假设 ,回答以下问题。

    1. 证明

    2. 的期望 和方差

    3. 。假设 ,求满足条件 的最大值。

  3. 使用 定义随机变量序列 如下。如果 中的第 对相邻变量,使得 ,则 定义为 。索引 从 0 开始,因此如果 是第一个这样的对,则 。例如,如果 ,则

    的概率。求