IS Math-2014-02
题目来源:Problem 2 日期:2024-08-09 题目主题:Math-Calculus-Orthogonal Polynomials
解题思路
在这个问题中,我们需要处理的主要任务是计算给定多项式之间的内积,以及利用这些内积构建正交归一的多项式集合。解题步骤可以大致分为以下几个部分:
-
计算多项式的内积:
- 首先,通过积分计算给定多项式 、 和 之间的内积 。这里,利用偶函数和奇函数的积分特性来简化计算。例如,任何偶函数在对称区间 上的积分等于两倍的从 到 的积分,而奇函数在对称区间 上的积分为零。
-
构建正交归一的多项式集合:
- 利用已经计算出的内积,通过归一化(使内积为 1)和正交化(使不同多项式之间的内积为 0)的过程,来构建一组正交归一的多项式。具体来说,我们使用格拉姆-施密特正交化过程(Gram-Schmidt Process)来逐步构建一组满足正交归一条件的多项式集合。
-
构造更高次的正交多项式:
- 在构造第 多项式时,需要确保它不仅与前面的多项式正交,还必须是一个标准化多项式(即归一化的)。通过格拉姆-施密特正交化过程,可以找到 的形式,并确保满足所有条件。
-
证明正交多项式的唯一性:
- 通过假设存在另一组不同的多项式集合,并分析其与已知正交归一多项式集合的关系,证明这种多项式必须是已知多项式的相反数,从而证明了正交多项式在符号上的唯一性。
整个解题过程依赖于对多项式内积、正交化过程及其几何意义的理解,同时需要熟练掌握积分计算和函数的奇偶性分析。在解决这些问题时,关注每一步的逻辑推导和计算细节,以确保最终构造的多项式集合确实满足正交归一条件。
Solution
Question 1
To compute the integrals, we need to evaluate the inner product for the given polynomials:
1.1. Compute
Since is an odd function and the integral is over a symmetric interval , we have:
1.2. Compute
This can be split into two integrals:
Since is even:
and:
Thus:
1.3. Compute
This can be split into two integrals:
Both and are odd functions, so:
1.4. Compute
1.5. Compute
1.6. Compute
Expanding the square:
Thus:
Compute each integral:
Thus:
Question 2
2-1. Orthonormal Set
We need to normalize , , and and orthogonalize them to form an orthonormal set.
So, the orthonormal set is:
2-2. Finding
To find using the Gram-Schmidt process, we begin by expressing as a linear combination of a cubic polynomial and the previously established orthogonal polynomials , , and . Specifically, we can express as:
Given that , , and are mutually orthogonal and their norms (self-inner products) are already computed, we aim to ensure that is orthogonal to all of them.
Step 1: Applying Orthogonality Conditions
We leverage the orthogonality conditions that must satisfy:
- Orthogonality to :
This implies .
- Orthogonality to :
Given the symmetry and oddness of certain terms, the significant contributions come from:
- Orthogonality to :
Given the specific form of and the orthogonality:
Step 2: Normalize
Given the orthogonality conditions, the polynomial simplifies to:
The next step is to normalize . The norm of is:
Simplifying this:
To normalize , we set , so the normalized polynomial is:
This final expression for ensures that the polynomial is both orthogonal to the previous polynomials and normalized, thus satisfying the orthonormality conditions.
Question 3
3-1. Expressing Coefficients
Given:
where are orthonormal, we have:
Thus:
3-2. Uniqueness of
Suppose is another polynomial of degree such that the set is orthonormal. Since is also a polynomial of degree , it can be expressed as a linear combination of the orthonormal polynomials :
where the coefficients are given by the inner products:
Since is orthogonal to , we have:
Thus, simplifies to:
Now, consider the fact that both and are normalized, meaning that:
Substituting into the normalization condition for , we get:
Given that , it follows that:
Therefore, , proving that is unique except for its sign.
知识点
正交多项式Gram-Schmidt正交化线性代数内积空间正交归一条件定积分
难点思路
本题的难点在于证明正交多项式的唯一性,即对于给定的正交归一化条件,如何证明在除了符号之外,不存在其他的正交多项式满足条件。通过将多项式的表达形式带入归一化条件,并结合积分的性质,我们能够严格地证明多项式的唯一性。这需要对多项式展开的系数进行细致的分析,并使用平方积分的方法来消除系数的不确定性。
解题技巧和信息
-
Gram-Schmidt 正交化:当构造正交多项式时,Gram-Schmidt 正交化过程是标准方法。该方法通过逐步消除各个多项式与之前所有多项式的相关性,最终获得正交多项式。
-
唯一性证明技巧:在证明多项式唯一性时,考虑到多项式的展开形式及其在内积空间中的正交性,通过平方和积分的方法可以直接得出唯一性。这种方法能够有效消除多项式展开系数的不确定性。
-
计算简化:在计算过程中,利用已知的正交条件和内积结果可以大大简化计算。这意味着你可以直接利用之前的计算结果,避免重复积分计算。
重点词汇
orthonormal condition 正交归一条件
inner product 内积
Gram-Schmidt process 格拉姆-施密特正交化过程
polynomial 多项式
uniqueness 唯一性
linear combination 线性组合
normalization 归一化
参考资料
- Arfken, G.B., Weber, H.J., and Harris, F.E. “Mathematical Methods for Physicists,” 7th ed. Academic Press, Chapter 12.
- Kreyszig, E. “Advanced Engineering Mathematics,” 10th ed. Wiley, Chapters on Linear Algebra and Inner Product Spaces.
- Strang, G. “Introduction to Linear Algebra,” 5th ed. Wellesley-Cambridge Press, Chapters on Orthogonal Projections and Orthogonality.