Inequality for Integrals | 积分不等式

1. Jensen’s Inequality | 詹森不等式

Definition | 定义

Jensen’s inequality applies to a convex function and a random variable . It states that for any convex function and integrable random variable :

是凸函数且 是可积随机变量,则詹森不等式表明:

Usage | 使用

  • Convex Functions: Ensure is convex, which means for all .

  • Expectation of a Random Variable: Useful in probability theory, particularly when working with expectations.

  • 凸函数:确保 是凸函数,即 对所有 成立

  • 随机变量的期望:在概率论中非常有用,特别是在处理期望时

Proof | 证明

  1. By definition, a function is convex if for any and :

根据定义,若函数 是凸函数,则对于任意的 ,有:

  1. Take the expectation over the inequality where is a random variable, using for discrete cases or integral form for continuous cases.

对该不等式取期望,其中 是随机变量,在离散情形下使用 ,在连续情形下使用积分形式

  1. The inequality leads to:

该不等式导出:

2. Hölder’s Inequality | Hölder 不等式

Definition | 定义

Hölder’s inequality provides a bound on the integral (or sum) of the product of functions. If and satisfy , then for integrable functions and :

Hölder 不等式为函数积的积分(或和)提供了一个界。若 满足 ,则对可积函数 ,有:

Usage | 使用

  • Normed Spaces: Essential in proving the Minkowski inequality and establishing norms.

  • L^p Spaces: Often used in functional analysis, particularly in spaces.

  • 赋范空间:在证明 Minkowski 不等式和建立范数时至关重要

  • 空间:在泛函分析中经常使用,特别是在 空间中

Proof | 证明

  1. Start with the convexity of the exponential function, which is a special case of Young’s inequality:

从指数函数的凸性开始,这是 Young 不等式的特例:

  1. Integrate both sides:

对双方积分:

  1. Apply the definition of and norms to complete the proof.

应用 范数的定义完成证明

3. Minkowski’s Inequality | Minkowski 不等式

Definition | 定义

Minkowski’s inequality is a generalization of the triangle inequality to integrals. For integrable functions and , and :

Minkowski 不等式是三角不等式对积分的推广。对可积函数 ,以及

Usage | 使用

  • Spaces: Fundamental in the study of spaces, particularly in proving that these spaces are normed vector spaces.

  • Distance Measurement: Used in defining the distance between functions in spaces.

  • 空间:在 空间研究中具有基础性意义,特别是在证明这些空间是赋范向量空间时

  • 距离度量:用于定义 空间中函数之间的距离

Proof | 证明

  1. Apply Hölder’s inequality to the sum of and raised to the power .

的和取 次方后,应用 Hölder 不等式

  1. The result follows by combining terms and recognizing the definition of the norm.

通过合并项并识别 范数的定义,得出结果

4. Cauchy-Schwarz Inequality | 柯西-施瓦茨不等式

Definition | 定义

The Cauchy-Schwarz inequality is a fundamental result in linear algebra and analysis. It states that for any two integrable functions and on a measurable space, the following inequality holds:

柯西-施瓦茨不等式是线性代数和分析中的一个基本结果。它表明,对于测度空间上的任意两个可积函数 ,有如下不等式成立:

Parametric Form | 参数形式

For real numbers , , and a parameter , the Cauchy-Schwarz inequality can be expressed as:

对于实数 和参数 ,柯西-施瓦茨不等式可以表示为:

Usage | 使用

  • Inner Product Spaces: Provides a bound on the inner product, critical in defining angles and orthogonality.

  • Distance Measurement: Used to establish the triangle inequality in normed vector spaces.

  • Convexity Proofs: The parametric form is often used in proving the convexity of functionals in variational problems.

  • 内积空间:为内积提供了一个上界,对定义角度和正交性至关重要。

  • 距离度量:用于在赋范向量空间中确立三角不等式。

  • 凸性证明:参数形式常用于证明变分问题中泛函的凸性。

Proof | 证明

  1. Consider the integral of the square of the linear combination for a scalar :

    考虑 的线性组合的平方积分,其中 为标量:

  2. Expand the square and integrate each term:

    展开平方并对每一项积分:

  3. The quadratic form in must be non-negative for all , leading to the discriminant condition:

    对于所有 ,该二次型必须非负,从而得到判别式条件:

  4. This completes the proof of the Cauchy-Schwarz inequality.

    由此完成柯西-施瓦茨不等式的证明。

Proof of Parametric Form | 参数形式的证明

  1. Expand the left side of the inequality:

    展开不等式的左边:

  2. Subtract the right side:

    减去右边:

  3. Factor out :

    提取公因子

  4. Since , we know that . Therefore:

    由于 ,我们知道 。因此:

This proves the parametric form of the Cauchy-Schwarz inequality.

这就证明了柯西-施瓦茨不等式的参数形式。