Inequality for Integrals | 积分不等式
1. Jensen’s Inequality | 詹森不等式
Definition | 定义
Jensen’s inequality applies to a convex function and a random variable . It states that for any convex function and integrable random variable :
若 是凸函数且 是可积随机变量,则詹森不等式表明:
Usage | 使用
-
Convex Functions: Ensure is convex, which means for all .
-
Expectation of a Random Variable: Useful in probability theory, particularly when working with expectations.
-
凸函数:确保 是凸函数,即 对所有 成立
-
随机变量的期望:在概率论中非常有用,特别是在处理期望时
Proof | 证明
- By definition, a function is convex if for any and :
根据定义,若函数 是凸函数,则对于任意的 和 ,有:
- Take the expectation over the inequality where is a random variable, using for discrete cases or integral form for continuous cases.
对该不等式取期望,其中 是随机变量,在离散情形下使用 ,在连续情形下使用积分形式
- The inequality leads to:
该不等式导出:
2. Hölder’s Inequality | Hölder 不等式
Definition | 定义
Hölder’s inequality provides a bound on the integral (or sum) of the product of functions. If and satisfy , then for integrable functions and :
Hölder 不等式为函数积的积分(或和)提供了一个界。若 且 满足 ,则对可积函数 和 ,有:
Usage | 使用
-
Normed Spaces: Essential in proving the Minkowski inequality and establishing norms.
-
L^p Spaces: Often used in functional analysis, particularly in spaces.
-
赋范空间:在证明 Minkowski 不等式和建立范数时至关重要
-
空间:在泛函分析中经常使用,特别是在 空间中
Proof | 证明
- Start with the convexity of the exponential function, which is a special case of Young’s inequality:
从指数函数的凸性开始,这是 Young 不等式的特例:
- Integrate both sides:
对双方积分:
- Apply the definition of and norms to complete the proof.
应用 和 范数的定义完成证明
3. Minkowski’s Inequality | Minkowski 不等式
Definition | 定义
Minkowski’s inequality is a generalization of the triangle inequality to integrals. For integrable functions and , and :
Minkowski 不等式是三角不等式对积分的推广。对可积函数 和 ,以及 :
Usage | 使用
-
Spaces: Fundamental in the study of spaces, particularly in proving that these spaces are normed vector spaces.
-
Distance Measurement: Used in defining the distance between functions in spaces.
-
空间:在 空间研究中具有基础性意义,特别是在证明这些空间是赋范向量空间时
-
距离度量:用于定义 空间中函数之间的距离
Proof | 证明
- Apply Hölder’s inequality to the sum of and raised to the power .
对 和 的和取 次方后,应用 Hölder 不等式
- The result follows by combining terms and recognizing the definition of the norm.
通过合并项并识别 范数的定义,得出结果
4. Cauchy-Schwarz Inequality | 柯西-施瓦茨不等式
Definition | 定义
The Cauchy-Schwarz inequality is a fundamental result in linear algebra and analysis. It states that for any two integrable functions and on a measurable space, the following inequality holds:
柯西-施瓦茨不等式是线性代数和分析中的一个基本结果。它表明,对于测度空间上的任意两个可积函数 和 ,有如下不等式成立:
Parametric Form | 参数形式
For real numbers , , and a parameter , the Cauchy-Schwarz inequality can be expressed as:
对于实数 、 和参数 ,柯西-施瓦茨不等式可以表示为:
Usage | 使用
-
Inner Product Spaces: Provides a bound on the inner product, critical in defining angles and orthogonality.
-
Distance Measurement: Used to establish the triangle inequality in normed vector spaces.
-
Convexity Proofs: The parametric form is often used in proving the convexity of functionals in variational problems.
-
内积空间:为内积提供了一个上界,对定义角度和正交性至关重要。
-
距离度量:用于在赋范向量空间中确立三角不等式。
-
凸性证明:参数形式常用于证明变分问题中泛函的凸性。
Proof | 证明
-
Consider the integral of the square of the linear combination for a scalar :
考虑 的线性组合的平方积分,其中 为标量:
-
Expand the square and integrate each term:
展开平方并对每一项积分:
-
The quadratic form in must be non-negative for all , leading to the discriminant condition:
对于所有 ,该二次型必须非负,从而得到判别式条件:
-
This completes the proof of the Cauchy-Schwarz inequality.
由此完成柯西-施瓦茨不等式的证明。
Proof of Parametric Form | 参数形式的证明
-
Expand the left side of the inequality:
展开不等式的左边:
-
Subtract the right side:
减去右边:
-
Factor out :
提取公因子 :
-
Since , we know that . Therefore:
由于 ,我们知道 。因此:
This proves the parametric form of the Cauchy-Schwarz inequality.
这就证明了柯西-施瓦茨不等式的参数形式。