IS Math-2014-01

题目来源Problem 1 日期:2024-08-10 题目主题:Math-线性代数-对称矩阵、特征值与二次型

解题思路

这道题目主要考察对称矩阵的特征值与特征向量的性质,以及如何利用这些性质进行函数的分析和不等式的证明。具体问题涉及以下几个核心知识点:

  1. 对称矩阵的特征值和特征向量:包括特征值的实数性及其几何解释。
  2. 二次型与线性变换:通过特征值分解,将二次型函数化简为标准形式,从而分析其极值问题。
  3. Rayleigh 商:作为二次型与特征值之间的联系,Rayleigh 商在评估函数取值范围时起到了关键作用。
  4. 函数关系的推导与不等式证明:结合对称矩阵的特征值性质,分析特定形式函数的取值范围,并通过极值点的分析证明不等式。

Solution

Question 1: Eigenvalues and Eigenvectors of Matrix

Given matrix:

To find the eigenvalues and eigenvectors, we solve the characteristic equation:

Expanding this determinant, we obtain the eigenvalues:

The corresponding eigenvectors are found by solving for each eigenvalue :

  • For :

  • For :

  • For :

Question 2: Prove that all eigenvalues of a symmetric matrix are real

Let be a symmetric matrix, and consider the eigenvalue equation:

where is an eigenvector and is the corresponding eigenvalue.

To prove that is real, multiply both sides of the equation by on the left:

Since is symmetric, is a real number because it represents a quadratic form. Additionally, is also a real and non-negative number (as it is the dot product of a vector with itself).

For the equation to hold, must be real because it is the only scalar multiplying the real, non-negative value . Therefore, all eigenvalues of a symmetric matrix are real.

Question 3: Example of a Real Matrix with Real Eigenvalues That Is Not Symmetric

Consider the matrix:

The eigenvalues of are and , both real. However, is not symmetric because:

Question 4: Show that

Given functions:

Expanding :

So:

Simplifying, we get:

Question 5: Inequality for

Given the symmetric matrix , we can perform an eigenvalue decomposition:

where is an orthogonal matrix whose columns are the eigenvectors of , and is the diagonal matrix of eigenvalues .

Step 1: Expressing Using Rayleigh Quotient

The function can be expressed as the Rayleigh quotient:

Using the eigenvalue decomposition of :

Let , which is the vector expressed in the basis of the eigenvectors of . Then we have:

This expression for is a weighted average of the eigenvalues , with the weights given by the components of .

Step 2: Relation to and Establishing the Inequality

From the earlier question, we know:

Substituting this into our expression for gives:

We already have the eigenvalues:

Thus, the minimum and maximum values of the weighted sum on the right-hand side occur when all the weight is on the smallest or largest eigenvalue, respectively. This gives:

Solving for :

知识点

对称矩阵特征值和特征向量 Rayleigh商二次型

难点思路

本题的难点在于最后一步中对 的不等式证明,需要通过对称矩阵的特征值分解结合函数极值进行推导。这涉及到对矩阵分解和二次型函数的理解。

解题技巧和信息

  1. 对称矩阵的特征值总是实数,这是因为特征向量对应的二次型形式具有实数解。
  2. 不对称矩阵即使有实数特征值,也不一定是对称的。
  3. 利用矩阵特征值分解可以将复杂的函数问题转化为标准形式,有助于分析函数的极值和不等式。

重点词汇

  • Symmetric matrix 对称矩阵
  • Eigenvalue 特征值
  • Eigenvector 特征向量
  • Eigenvalue decomposition 特征值分解
  • Quadratic form 二次型

参考资料

  1. Gilbert Strang, Linear Algebra and Its Applications, Chap. 5 (关于对称矩阵的特征值与特征向量)
  2. Axler, Linear Algebra Done Right, Chap. 7 (对称矩阵的性质)