IS Math-2014-01
题目来源:Problem 1 日期:2024-08-10 题目主题:Math-线性代数-对称矩阵、特征值与二次型
解题思路
这道题目主要考察对称矩阵的特征值与特征向量的性质,以及如何利用这些性质进行函数的分析和不等式的证明。具体问题涉及以下几个核心知识点:
- 对称矩阵的特征值和特征向量:包括特征值的实数性及其几何解释。
- 二次型与线性变换:通过特征值分解,将二次型函数化简为标准形式,从而分析其极值问题。
- Rayleigh 商:作为二次型与特征值之间的联系,Rayleigh 商在评估函数取值范围时起到了关键作用。
- 函数关系的推导与不等式证明:结合对称矩阵的特征值性质,分析特定形式函数的取值范围,并通过极值点的分析证明不等式。
Solution
Question 1: Eigenvalues and Eigenvectors of Matrix
Given matrix:
To find the eigenvalues and eigenvectors, we solve the characteristic equation:
Expanding this determinant, we obtain the eigenvalues:
The corresponding eigenvectors are found by solving for each eigenvalue :
-
For :
-
For :
-
For :
Question 2: Prove that all eigenvalues of a symmetric matrix are real
Let be a symmetric matrix, and consider the eigenvalue equation:
where is an eigenvector and is the corresponding eigenvalue.
To prove that is real, multiply both sides of the equation by on the left:
Since is symmetric, is a real number because it represents a quadratic form. Additionally, is also a real and non-negative number (as it is the dot product of a vector with itself).
For the equation to hold, must be real because it is the only scalar multiplying the real, non-negative value . Therefore, all eigenvalues of a symmetric matrix are real.
Question 3: Example of a Real Matrix with Real Eigenvalues That Is Not Symmetric
Consider the matrix:
The eigenvalues of are and , both real. However, is not symmetric because:
Question 4: Show that
Given functions:
Expanding :
So:
Simplifying, we get:
Question 5: Inequality for
Given the symmetric matrix , we can perform an eigenvalue decomposition:
where is an orthogonal matrix whose columns are the eigenvectors of , and is the diagonal matrix of eigenvalues .
Step 1: Expressing Using Rayleigh Quotient
The function can be expressed as the Rayleigh quotient:
Using the eigenvalue decomposition of :
Let , which is the vector expressed in the basis of the eigenvectors of . Then we have:
This expression for is a weighted average of the eigenvalues , with the weights given by the components of .
Step 2: Relation to and Establishing the Inequality
From the earlier question, we know:
Substituting this into our expression for gives:
We already have the eigenvalues:
Thus, the minimum and maximum values of the weighted sum on the right-hand side occur when all the weight is on the smallest or largest eigenvalue, respectively. This gives:
Solving for :
知识点
难点思路
本题的难点在于最后一步中对 的不等式证明,需要通过对称矩阵的特征值分解结合函数极值进行推导。这涉及到对矩阵分解和二次型函数的理解。
解题技巧和信息
- 对称矩阵的特征值总是实数,这是因为特征向量对应的二次型形式具有实数解。
- 不对称矩阵即使有实数特征值,也不一定是对称的。
- 利用矩阵特征值分解可以将复杂的函数问题转化为标准形式,有助于分析函数的极值和不等式。
重点词汇
- Symmetric matrix 对称矩阵
- Eigenvalue 特征值
- Eigenvector 特征向量
- Eigenvalue decomposition 特征值分解
- Quadratic form 二次型
参考资料
- Gilbert Strang, Linear Algebra and Its Applications, Chap. 5 (关于对称矩阵的特征值与特征向量)
- Axler, Linear Algebra Done Right, Chap. 7 (对称矩阵的性质)