2015

Problem 1

Let and be defined as

The partial derivative of a scalar-valued function with respect to is defined as

and a stationary point of is defined as satisfying . denotes the transpose of . Answer the following questions.

  1. Find the characteristic polynomial of .
  2. is given as by using and an identity matrix . Calculate .
  3. Calculate the partial derivative of with respect to .
  4. Find a symmetric matrix that satisfies the equation for any vector . Find eigenvalues , and eigenvectors . Choose the eigenvectors such that becomes an orthogonal matrix.
  5. Prove that holds for any real vector .
  6. Find a stationary point of function .

以下是问题 1

定义为

标量值函数 相对于 的偏导数定义为

的驻点定义为满足 表示 的转置。回答以下问题。

  1. 的特征多项式。
  2. 给定 ,使用 和单位矩阵 计算
  3. 计算 的偏导数。
  4. 找到一个对称矩阵 ,使得对于任意向量 ,方程 成立。求特征值 和特征向量 。选择特征向量使得 成为正交矩阵。
  5. 证明 对于任意实向量 成立。
  6. 求函数 的驻点。

Problem 2

Answer the following questions regarding curves on the -plane.

  1. Show that the foci of an ellipse:

    and those of a hyperbola:

    are and , respectively. Note that an ellipse (hyperbola) is a curve such that the sum (difference) of the distances from the foci to any point on the curve is constant.

  2. As for Eq. (*), consider the set of ellipses such that ( is a positive constant). By writing the simultaneous equations that consist of Eq. (*) and the differential equation obtained by taking the derivative of Eq. (*) with respect to , show that any ellipse in satisfies

    where .

  3. As for Eq. (**), consider the set of hyperbolae such that . Show that any hyperbola in satisfies Eq. (***).

  4. Let be the set of curves perpendicular to any ellipse in . Let be the set of curves obtained by removing from the line as well as all the curves including a point such that . Find a differential equation that any curve in satisfies.

  5. Solve the differential equation that you found in Question (4). If necessary, rewrite the differential equation into a differential equation with respect to with replacement such that , , and .


平面上回答以下与曲线有关的问题。

  1. 证明椭圆的焦点:

    和双曲线的焦点:

    分别是 。注意,椭圆(双曲线)是一种曲线,使得从焦点到曲线上任意一点的距离之和(差)是恒定的。

  2. 对于方程 (*),考虑椭圆 的集合,使得 是一个正常数)。通过写出由方程 (*) 及其相对于 的导数方程组成的联立方程,证明 中的任何椭圆都满足

    其中

  3. 对于方程 (**) ,考虑双曲线 的集合,使得 。证明 中的任何双曲线都满足方程 (***)。

  4. 为与 中任何椭圆垂直的曲线集合。设 为通过去除 中直线 以及包含 点的所有曲线而获得的曲线集合。找出 中任何曲线满足的微分方程。

  5. 求解你在问题 (4) 中找到的微分方程。如果有必要,用 代替使得 , ,并且 的微分方程。


Problem 3

Answer the following questions.

  1. Let be a real-valued random variable. Let be a real-valued variable. We define for as

    where denotes the expectation taken with respect to . Supposing that is finite in a neighborhood of , give the mean and variance of using and . Here and denote the first- and second-order derivatives of with respect to , respectively.

  2. For a sequence of mutually independent random variables: , suppose that each is identically generated according to the 1-dimensional normal distribution with mean and variance . That is, the probability density function for each is given by

    Then calculate . Also find a probability distribution according to which

    is generated. You can use the fact that for random variables and with , the probability distribution of is the same as that of .

  3. Suppose that as in Question (2) is generated according to the geometric distribution with parameter for which the probability function is given by

    For , define by

    Then calculate and express it using . Since does not depend on , you can write it as .

  4. Calculate the mean and variance of in Question (3).

  5. Given , give an upper bound on the probability that in Question (3) exceeds , as a function of , , , and (not all of , , , and have to be used).


回答以下问题。

  1. 是一个实值随机变量。令 是一个实值变量。我们定义

    其中 表示对 取期望。假设 的邻域内是有限的,使用 给出 的均值和方差。这里 分别表示 的一阶和二阶导数。

  2. 对于一列相互独立的随机变量:,假设每个 都按一维正态分布生成,均值为 ,方差为 。即每个 的概率密度函数为

    然后计算 。还要找到一个概率分布,使得

    是生成的。你可以使用这样一个事实,对于随机变量 ,如果 ,则 的概率分布与 相同。

  3. 假设 (如问题 (2))是按照参数为 的几何分布生成的,其概率函数为

    对于 ,定义

    然后计算 并用 表示它。由于 不依赖于 ,你可以将其写为

  4. 计算问题 (3) 中 的均值和方差。

  5. 给定 ,给出问题 (3) 中 超过 的概率的上界,作为 的函数(不必全部使用 )。