2015
Problem 1
Let and be defined as
The partial derivative of a scalar-valued function with respect to is defined as
and a stationary point of is defined as satisfying . denotes the transpose of . Answer the following questions.
- Find the characteristic polynomial of .
- is given as by using and an identity matrix . Calculate .
- Calculate the partial derivative of with respect to .
- Find a symmetric matrix that satisfies the equation for any vector . Find eigenvalues , and eigenvectors . Choose the eigenvectors such that becomes an orthogonal matrix.
- Prove that holds for any real vector .
- Find a stationary point of function .
以下是问题 1
令 和 定义为
标量值函数 相对于 的偏导数定义为
的驻点定义为满足 的 。 表示 的转置。回答以下问题。
- 求 的特征多项式。
- 给定 ,使用 和单位矩阵 计算 。
- 计算 对 的偏导数。
- 找到一个对称矩阵 ,使得对于任意向量 ,方程 成立。求特征值 和特征向量 。选择特征向量使得 成为正交矩阵。
- 证明 对于任意实向量 成立。
- 求函数 的驻点。
Problem 2
Answer the following questions regarding curves on the -plane.
-
Show that the foci of an ellipse:
and those of a hyperbola:
are and , respectively. Note that an ellipse (hyperbola) is a curve such that the sum (difference) of the distances from the foci to any point on the curve is constant.
-
As for Eq. (*), consider the set of ellipses such that ( is a positive constant). By writing the simultaneous equations that consist of Eq. (*) and the differential equation obtained by taking the derivative of Eq. (*) with respect to , show that any ellipse in satisfies
where .
-
As for Eq. (**), consider the set of hyperbolae such that . Show that any hyperbola in satisfies Eq. (***).
-
Let be the set of curves perpendicular to any ellipse in . Let be the set of curves obtained by removing from the line as well as all the curves including a point such that . Find a differential equation that any curve in satisfies.
-
Solve the differential equation that you found in Question (4). If necessary, rewrite the differential equation into a differential equation with respect to with replacement such that , , and .
在 平面上回答以下与曲线有关的问题。
-
证明椭圆的焦点:
和双曲线的焦点:
分别是 和 。注意,椭圆(双曲线)是一种曲线,使得从焦点到曲线上任意一点的距离之和(差)是恒定的。
-
对于方程 (*),考虑椭圆 的集合,使得 ( 是一个正常数)。通过写出由方程 (*) 及其相对于 的导数方程组成的联立方程,证明 中的任何椭圆都满足
其中 。
-
对于方程 (**) ,考虑双曲线 的集合,使得 。证明 中的任何双曲线都满足方程 (***)。
-
设 为与 中任何椭圆垂直的曲线集合。设 为通过去除 中直线 以及包含 点的所有曲线而获得的曲线集合。找出 中任何曲线满足的微分方程。
-
求解你在问题 (4) 中找到的微分方程。如果有必要,用 代替使得 , ,并且 的微分方程。
Problem 3
Answer the following questions.
-
Let be a real-valued random variable. Let be a real-valued variable. We define for as
where denotes the expectation taken with respect to . Supposing that is finite in a neighborhood of , give the mean and variance of using and . Here and denote the first- and second-order derivatives of with respect to , respectively.
-
For a sequence of mutually independent random variables: , suppose that each is identically generated according to the 1-dimensional normal distribution with mean and variance . That is, the probability density function for each is given by
Then calculate . Also find a probability distribution according to which
is generated. You can use the fact that for random variables and with , the probability distribution of is the same as that of .
-
Suppose that as in Question (2) is generated according to the geometric distribution with parameter for which the probability function is given by
For , define by
Then calculate and express it using . Since does not depend on , you can write it as .
-
Calculate the mean and variance of in Question (3).
-
Given , give an upper bound on the probability that in Question (3) exceeds , as a function of , , , and (not all of , , , and have to be used).
回答以下问题。
-
设 是一个实值随机变量。令 是一个实值变量。我们定义 的 为
其中 表示对 取期望。假设 在 的邻域内是有限的,使用 和 给出 的均值和方差。这里 和 分别表示 的一阶和二阶导数。
-
对于一列相互独立的随机变量:,假设每个 都按一维正态分布生成,均值为 ,方差为 。即每个 的概率密度函数为
然后计算 。还要找到一个概率分布,使得
是生成的。你可以使用这样一个事实,对于随机变量 和 ,如果 ,则 的概率分布与 相同。
-
假设 (如问题 (2))是按照参数为 的几何分布生成的,其概率函数为
对于 ,定义 为
然后计算 并用 表示它。由于 不依赖于 ,你可以将其写为 。
-
计算问题 (3) 中 的均值和方差。
-
给定 ,给出问题 (3) 中 超过 的概率的上界,作为 、、 和 的函数(不必全部使用 、、 和 )。