多元微分 Multivariable Differential
概念与定义 Concepts and Definitions
二元函数 Bivariate Function
一个二元函数是指有两个自变量的函数,形式为 。自变量 和 分别属于实数集 的子集,函数值 属于实数集
A bivariate function refers to a function with two variables, in the form of . The variables and belong to subsets of the real numbers , and the function value belongs to the real numbers
极限 Limits
设 为定义在区域 上的函数。如果存在实数 使得当 充分接近点 时, 的值无限接近 ,则称 为 在 处的极限,记作:
Let be a function defined on a region . If there exists a real number such that as approaches the point , the value of approaches , then is called the limit of at , denoted as:
连续性 Continuity
若 在点 处有定义,且满足以下条件:
则称 在点 处连续
If is defined at the point and satisfies the following condition:
then is continuous at the point
偏导数 Partial Derivatives
二元函数 在点 处对 的偏导数定义为:
对 的偏导数定义为:
The partial derivative of a bivariate function at the point with respect to is defined as:
The partial derivative with respect to is defined as:
性质与定理 Properties and Theorems
可微性 Differentiability
若 在点 处连续,并且存在常数 和 使得:
则称 在点 处可微
If is continuous at the point , and there exist constants and such that:
then is differentiable at the point
混合偏导数 Mixed Partial Derivatives
若函数 的二阶偏导数连续,即 ,则称 的混合偏导数连续
If the second-order partial derivatives of the function are continuous, i.e., , then the mixed partial derivatives of are continuous
泰勒展开 Taylor Expansion
若 在点 处有二阶连续偏导数,则可以展开为泰勒级数形式:
If has second-order continuous partial derivatives at the point , it can be expanded in the form of a Taylor series:
计算技巧 Calculation Techniques
链式法则 Chain Rule
如果 ,且 ,则 对 的导数为:
If , and , then the derivative of with respect to is:
方向导数 Directional Derivative
在方向 上,函数 在点 处的方向导数定义为:
In the direction , the directional derivative of the function at the point is defined as:
梯度 Gradient
函数 在点 处的梯度为:
The gradient of the function at the point is:
拉普拉斯算子 Laplacian
拉普拉斯算子用于描述函数的二阶导数和,定义为:
The Laplacian operator is used to describe the sum of the second-order derivatives of a function, defined as:
例题 Examples
例 1 Example 1
求函数 在点 处的梯度
Calculate the gradient of the function at the point
解:
Solution:
例 2 Example 2
计算 当 且 时的
Calculate for when and
解:
Solution: