Master Theorem | 主定理

定义 | Definition

主定理是用于求解形如 的递归关系的一种数学工具。它广泛应用于分析分治算法的时间复杂度。

The Master Theorem provides a method to solve recurrence relations of the form . It is widely used in analyzing the time complexity of divide-and-conquer algorithms.

递归关系 | Recurrence Relation

给定递归关系

Given the recurrence relation :

  • :子问题的数量。
    • The number of subproblems.
  • :每个子问题的规模缩减因子。
    • The factor by which the subproblem size is reduced.
  • :划分和合并子问题所需的额外工作量。
    • The additional work done outside the recursive calls, such as dividing and merging the subproblems.

主定理 | Master Theorem

主定理根据函数 的增长率,将递归关系分为三种情况。

The Master Theorem classifies the recurrence into three cases based on the growth rate of the function .

情况 1 | Case 1:

如果 增长速度比 慢(即 ),则:

If grows slower than (where ), then:

情况 2 | Case 2:

如果 的增长速度与 相同,则:

If grows at the same rate as , then:

情况 3 | Case 3:

如果 增长速度比 快(即 ),并且满足 ,其中 充分大,则:

If grows faster than (where ), and if for some and sufficiently large , then:

示例 | Examples

示例 1 | Example 1:

比较

Compare with :

适用于情况 2,因此:

Fits Case 2, thus:

示例 2 | Example 2:

比较

Compare with :

适用于情况 2,因此:

Fits Case 2, thus:

示例 3 | Example 3:

比较

Compare with :

  • ,其中

适用于情况 3,并满足 ,因此:

Fits Case 3 and satisfies , thus:

总结 | Summary

主定理提供了一种系统的方法来解决常见的递归关系,特别是那些在分治算法中出现的递归关系。通过理解和应用主定理,可以快速确定算法的时间复杂度,从而优化和分析算法性能。

The Master Theorem provides a systematic method to solve common recurrence relations, especially those appearing in divide-and-conquer algorithms. By understanding and applying the Master Theorem, one can quickly determine the time complexity of algorithms, thus optimizing and analyzing algorithm performance.