Residue Theory and Its Applications
留数理论及其应用
1. Introduction 简介
Residue theory is a powerful tool in complex analysis for evaluating certain integrals and series.
留数理论是复分析中用于计算某些积分和级数的强大工具。
2. Key Concepts 核心概念
2.1 Residue 留数
Definition 定义: The residue of a meromorphic function at a singularity is the coefficient of in the Laurent series expansion of about . 函数 在奇点 处的留数是 在 处的洛朗级数展开中 项的系数。
Notation 记号: or
2.2 Types of Singularities 奇点类型
-
Removable Singularity 可去奇点:
- Residue is 0 留数为 0
-
Simple Pole 简单极点:
- exists and is non-zero
- 存在且不为零
-
Pole of Order m m 阶极点:
- exists and is non-zero
- 存在且不为零
-
Essential Singularity 本性奇点:
- Neither removable nor a pole
- 既不是可去奇点也不是极点
3. Residue Calculation Techniques 留数计算技巧
3.1 For Simple Poles 简单极点
3.2 For Poles of Order m m 阶极点
3.3 Using Laurent Series 使用洛朗级数
If , then:
如果 ,那么:
4. Residue Theorem 留数定理
Statement 陈述: Let be meromorphic in a simply connected domain , and let be a simple closed contour in . If has finitely many singularities inside , then: 设 在单连通区域 内亚纯, 是 内的简单闭合曲线。如果 在 内有有限个奇点 ,则:
5. Applications 应用
5.1 Evaluation of Real Integrals 实积分的计算
For , consider where is a semicircle in the upper half-plane.
对于 ,考虑 ,其中 是上半平面的半圆。
5.2 Summation of Series 级数求和
For , consider and its residues.
对于 ,考虑 及其留数。
5.3 Argument Principle 辐角原理
Where is the number of zeros and is the number of poles of inside , counting multiplicity.
其中 是 在 内的零点数, 是极点数,计算重数。
6. Common Mistakes to Avoid 常见错误
-
Forgetting to check if all singularities are inside the contour. 忘记检查是否所有奇点都在轮廓内。
-
Misidentifying the order of a pole. 错误识别极点的阶数。
-
Neglecting to consider residues at infinity for improper integrals. 对于非正常积分,忽略了无穷远处的留数。
-
Incorrectly applying the residue theorem to non-meromorphic functions. 错误地将留数定理应用于非亚纯函数。
7. Practice Problems 练习题
-
Calculate using residue theory. 使用留数理论计算 。
-
Find the sum of the series using residue theory. 使用留数理论求级数 的和。
-
Evaluate . 计算 。