2022
Problem 1
Consider the following multiple conditions on .
Let be the set of points for which at least one exists satisfying the above conditions. Note that the set can be seen in the three-dimensional Cartesian coordinate system as the orthogonal projection of points satisfying the above conditions onto the -plane. Answer the following questions.
-
Find the inequalities on and representing .
-
Draw a figure of in the -plane. If the boundary of intersects with the -axis or the -axis, write down the coordinates at each intersection.
-
The curved segments of the boundary of correspond to the linear transformation of arcs of the unit circle with a matrix . Find one such . Note that the point on the unit circle must be transformed to a point where the curvature is maximized in the curved segments.
-
Calculate the determinant of found in (3).
-
Calculate the area of the set . Note that the absolute value of the determinant of a matrix is the area scale factor of the transformation with that matrix.
考虑以下对 的多个条件。
设 为至少存在一个 满足上述条件的点 的集合。注意,集合 可以看作是在三维笛卡尔坐标系中满足上述条件的点 投影到 平面上的正交投影。回答以下问题。
-
找出表示 的 和 的不等式。
-
在 平面中绘制 的图形。如果 的边界与 轴或 轴相交,写下每个交点的坐标。
-
边界的曲线段对应于单位圆的弧线在矩阵 下的线性变换。找出一个这样的 。注意,单位圆上的点 必须被变换到曲线段中曲率最大的点。
-
计算在(3)中找到的 的行列式。
-
计算集合 的面积。注意,矩阵行列式的绝对值是该矩阵变换的面积缩放因子。
Problem 2
Consider the following integral for and .
Assume that a real-valued function is continuous and differentiable on , its derivative is continuous, and . Answer the following questions.
-
Define . Show that .
You can use the fact that the integration and the differentiation commute in this context.
-
Define . Show that exists for any and it uniformly converges on , and show that
\int_{0}^{\infty} \frac{e^{-px} \cos(px) - e^{-qx} \cos(qx)}{x} , dx
--- 考虑以下积分 $I_n(\alpha)$ 其中 $\alpha \geq 1$ 且 $n > 0$。I_n(\alpha) = \int_{\frac{1}{n}}^{n} \frac{f(\alpha x) - f(x)}{x} , dx
假设一个实值函数 $f(x)$ 在 $x \geq 0$ 上是连续且可微的,其导数是连续的,并且 $\lim_{x \to \infty} f(x) = 0$。回答以下问题。 1. 定义 $J_n(\alpha) = \frac{d I_n(\alpha)}{d \alpha}$。证明 $J_n(\alpha) = \frac{1}{\alpha} \left( f(\alpha n) - f\left(\frac{\alpha}{n}\right) \right)$。 在这种情况下,你可以使用积分和微分可交换的事实。 2. 定义 $I(\alpha) = \lim_{n \to \infty} I_n(\alpha)$。证明 $\lim_{n \to \infty} J_n(\beta)$ 对于任何 $\beta \in [1, \alpha]$ 存在并且在 $[1, \alpha]$ 上一致收敛,并证明I(\alpha) = \int_{1}^{\alpha} \left( \lim_{n \to \infty} J_n(\beta) \right) d\beta.
3. 求 $I(\alpha)$。 4. 计算以下积分。注意 $p > q > 0$。\int_{0}^{\infty} \frac{e^{-px} \cos(px) - e^{-qx} \cos(qx)}{x} , dx
--- ## Problem 3 Consider a region $R$ defined by $0 < x < 1$ and $0 < y < 1$ in the $xy$-plane. We randomly select a point on $R$ and refer to the selected point as $A$. We assume that $A$ is uniformly distributed on $R$. Let $AB$ be a perpendicular line from $A$ to the $y$-axis and $AC$ be a perpendicular line from $A$ to the $x$-axis as shown in the figure. We call rectangle $OCAB$ as "the rectangle of $A$", where $O$ denotes the origin. Let $S$ be a random variable representing the area of the rectangle of $A$. Answer the following questions. 1. Calculate the expectation value of $S$. 2. Calculate the probability that $S \leq r$ holds, where $0 < r < 1$. 3. Calculate the probability density function of $S$. Again consider the region $R$. Let $n$ be a positive integer. We select $n$ points on $R$ and refer to the selected points as $A_1, A_2, \ldots, A_n$. We assume that each of the points is uniformly distributed on $R$, and $A_i$ and $A_j$ for $i \neq j$ are selected independently. Answer the following question. 4. Let $S_i$ be a random variable representing the area of the rectangle of $A_i$. Let $Z$ be a random variable which is the minimum of $S_1, S_2, \ldots, S_n$. Calculate the probability density function of $Z$. --- ![[Pasted image 20240627144917.png]] --- 考虑一个区域 $R$,定义为 $0 < x < 1$ 和 $0 < y < 1$ 在 $xy$ 平面上。我们随机选择 $R$ 上的一个点,并将其称为 $A$。我们假设 $A$ 在 $R$ 上均匀分布。令 $AB$ 为从 $A$ 到 $y$ 轴的垂线,$AC$ 为从 $A$ 到 $x$ 轴的垂线,如图所示。我们称矩形 $OCAB$ 为“$A$ 的矩形”,其中 $O$ 表示原点。令 $S$ 为表示 $A$ 的矩形面积的随机变量。回答以下问题。 1. 计算 $S$ 的期望值。 2. 计算 $S \leq r$ 的概率,其中 $0 < r < 1$。 3. 计算 $S$ 的概率密度函数。 再次考虑区域 $R$。令 $n$ 为正整数。我们在 $R$ 上选择 $n$ 个点,并将选定的点称为 $A_1, A_2, \ldots, A_n$。我们假设每个点在 $R$ 上均匀分布,并且 $A_i$ 和 $A_j$ 对于 $i \neq j$ 是独立选择的。回答以下问题。 4. 令 $S_i$ 为表示 $A_i$ 的矩形面积的随机变量。令 $Z$ 为 $S_1, S_2, \ldots, S_n$ 的最小值的随机变量。计算 $Z$ 的概率密度函数。