2022

Problem 1

Consider the following multiple conditions on .

Let be the set of points for which at least one exists satisfying the above conditions. Note that the set can be seen in the three-dimensional Cartesian coordinate system as the orthogonal projection of points satisfying the above conditions onto the -plane. Answer the following questions.

  1. Find the inequalities on and representing .

  2. Draw a figure of in the -plane. If the boundary of intersects with the -axis or the -axis, write down the coordinates at each intersection.

  3. The curved segments of the boundary of correspond to the linear transformation of arcs of the unit circle with a matrix . Find one such . Note that the point on the unit circle must be transformed to a point where the curvature is maximized in the curved segments.

  4. Calculate the determinant of found in (3).

  5. Calculate the area of the set . Note that the absolute value of the determinant of a matrix is the area scale factor of the transformation with that matrix.


考虑以下对 的多个条件。

为至少存在一个 满足上述条件的点 的集合。注意,集合 可以看作是在三维笛卡尔坐标系中满足上述条件的点 投影到 平面上的正交投影。回答以下问题。

  1. 找出表示 的不等式。

  2. 平面中绘制 的图形。如果 的边界与 轴或 轴相交,写下每个交点的坐标。

  3. 边界的曲线段对应于单位圆的弧线在矩阵 下的线性变换。找出一个这样的 。注意,单位圆上的点 必须被变换到曲线段中曲率最大的点。

  4. 计算在(3)中找到的 的行列式。

  5. 计算集合 的面积。注意,矩阵行列式的绝对值是该矩阵变换的面积缩放因子。


Problem 2

Consider the following integral for and .

Assume that a real-valued function is continuous and differentiable on , its derivative is continuous, and . Answer the following questions.

  1. Define . Show that .

    You can use the fact that the integration and the differentiation commute in this context.

  2. Define . Show that exists for any and it uniformly converges on , and show that

3. Obtain $I(\alpha)$. 4. Calculate the following integral. Note that $p > q > 0$.

\int_{0}^{\infty} \frac{e^{-px} \cos(px) - e^{-qx} \cos(qx)}{x} , dx

--- 考虑以下积分 $I_n(\alpha)$ 其中 $\alpha \geq 1$ 且 $n > 0$。

I_n(\alpha) = \int_{\frac{1}{n}}^{n} \frac{f(\alpha x) - f(x)}{x} , dx

假设一个实值函数 $f(x)$ 在 $x \geq 0$ 上是连续且可微的,其导数是连续的,并且 $\lim_{x \to \infty} f(x) = 0$。回答以下问题。 1. 定义 $J_n(\alpha) = \frac{d I_n(\alpha)}{d \alpha}$。证明 $J_n(\alpha) = \frac{1}{\alpha} \left( f(\alpha n) - f\left(\frac{\alpha}{n}\right) \right)$。 在这种情况下,你可以使用积分和微分可交换的事实。 2. 定义 $I(\alpha) = \lim_{n \to \infty} I_n(\alpha)$。证明 $\lim_{n \to \infty} J_n(\beta)$ 对于任何 $\beta \in [1, \alpha]$ 存在并且在 $[1, \alpha]$ 上一致收敛,并证明

I(\alpha) = \int_{1}^{\alpha} \left( \lim_{n \to \infty} J_n(\beta) \right) d\beta.

3. 求 $I(\alpha)$。 4. 计算以下积分。注意 $p > q > 0$。

\int_{0}^{\infty} \frac{e^{-px} \cos(px) - e^{-qx} \cos(qx)}{x} , dx

--- ## Problem 3 Consider a region $R$ defined by $0 < x < 1$ and $0 < y < 1$ in the $xy$-plane. We randomly select a point on $R$ and refer to the selected point as $A$. We assume that $A$ is uniformly distributed on $R$. Let $AB$ be a perpendicular line from $A$ to the $y$-axis and $AC$ be a perpendicular line from $A$ to the $x$-axis as shown in the figure. We call rectangle $OCAB$ as "the rectangle of $A$", where $O$ denotes the origin. Let $S$ be a random variable representing the area of the rectangle of $A$. Answer the following questions. 1. Calculate the expectation value of $S$. 2. Calculate the probability that $S \leq r$ holds, where $0 < r < 1$. 3. Calculate the probability density function of $S$. Again consider the region $R$. Let $n$ be a positive integer. We select $n$ points on $R$ and refer to the selected points as $A_1, A_2, \ldots, A_n$. We assume that each of the points is uniformly distributed on $R$, and $A_i$ and $A_j$ for $i \neq j$ are selected independently. Answer the following question. 4. Let $S_i$ be a random variable representing the area of the rectangle of $A_i$. Let $Z$ be a random variable which is the minimum of $S_1, S_2, \ldots, S_n$. Calculate the probability density function of $Z$. --- ![[Pasted image 20240627144917.png]] --- 考虑一个区域 $R$,定义为 $0 < x < 1$ 和 $0 < y < 1$ 在 $xy$ 平面上。我们随机选择 $R$ 上的一个点,并将其称为 $A$。我们假设 $A$ 在 $R$ 上均匀分布。令 $AB$ 为从 $A$ 到 $y$ 轴的垂线,$AC$ 为从 $A$ 到 $x$ 轴的垂线,如图所示。我们称矩形 $OCAB$ 为“$A$ 的矩形”,其中 $O$ 表示原点。令 $S$ 为表示 $A$ 的矩形面积的随机变量。回答以下问题。 1. 计算 $S$ 的期望值。 2. 计算 $S \leq r$ 的概率,其中 $0 < r < 1$。 3. 计算 $S$ 的概率密度函数。 再次考虑区域 $R$。令 $n$ 为正整数。我们在 $R$ 上选择 $n$ 个点,并将选定的点称为 $A_1, A_2, \ldots, A_n$。我们假设每个点在 $R$ 上均匀分布,并且 $A_i$ 和 $A_j$ 对于 $i \neq j$ 是独立选择的。回答以下问题。 4. 令 $S_i$ 为表示 $A_i$ 的矩形面积的随机变量。令 $Z$ 为 $S_1, S_2, \ldots, S_n$ 的最小值的随机变量。计算 $Z$ 的概率密度函数。