CBMS-2024B-11
题目来源:Question 11 日期:2024-08-04 题目主题:Math-量子计算-密度矩阵与量子门操作
解题思路
这道题目涉及量子计算中的密度矩阵和量子门操作,需要运用线性代数和复数运算的知识。我们将逐步解答每个小问:
- 求密度矩阵的特征值,证明它们是非负实数。
- 计算 Hadamard 门(H 门)操作后的测量概率。
- 计算 Y 门操作后的测量概率。
- 计算一般量子门 U 操作后的密度矩阵参数。
每个小问都需要详细的数学推导。
Solution
1. Show that all the eigenvalues of matrix are non-negative real numbers
To find the eigenvalues of , we need to solve the characteristic equation:
The solutions to this quadratic equation are:
Since , we have . Therefore, both eigenvalues are real and non-negative.
2. Probability of observing state 0 after applying H gate
The Hadamard gate operation transforms to . Let’s calculate this:
The probability of observing state 0 is the top-left element of this matrix:
3. Probability of observing state 0 after applying Y gate
Similarly, for the Y gate:
The probability of observing state 0 is:
4. Compute after applying U gate
Let and
We need to calculate . This is a complex calculation, so let’s break it down:
Now, multiplying this by and focusing on the diagonal elements:
Where:
Now, we need to compute . This is a very long and complex calculation. However, we can use a property of unitary matrices: . This implies that the transformation preserves the trace and the purity of the density matrix.
The purity of a density matrix is defined as .
Since this quantity is preserved under unitary transformations, we have:
Therefore:
This result shows that the sum of squares of the parameters in the density matrix is invariant under unitary transformations.
知识点
难点思路
第 4 小问的计算过程非常复杂,直接计算会非常繁琐。关键是要认识到酉变换的性质,即它保持密度矩阵的纯度不变。这样可以大大简化计算。
解题技巧和信息
- 在处理密度矩阵时,要注意其特殊性质:Hermitian(自伴)、半正定、迹为 1。
- 量子门操作可以表示为 ,其中 是酉矩阵。
- 酉变换保持密度矩阵的迹和纯度不变,意味着新态的 保持不变。这是解决复杂问题的关键。
- 在计算复杂的矩阵乘法时,可以先关注最终需要的元素,而不必计算整个矩阵。
- Hadamard 门 将计算基的状态均匀地混合到对角线基。测量概率可以通过变换后的密度矩阵来计算。
- Pauli-Y 门 交换计算基的状态并引入相位因子。
重点词汇
- density matrix 密度矩阵
- eigenvalue 特征值
- quantum gate 量子门
- Hadamard gate H 门
- unitary transformation 酉变换
- purity 纯度
- trace 迹
参考资料
- Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press. Chapter 2 and 4.
- Wilde, M. M. (2017). Quantum Information Theory. Cambridge University Press. Chapter 3.