IS CS-2020S1-03
题目来源:Problem 3 日期:2024-08-07 题目主题:CS-算法-字符串匹配
解题思路
此题探讨字符串匹配问题中的几种算法及其复杂度分析。我们需要讨论暴力搜索算法 的时间复杂度,以及基于哈希值计算的优化算法。我们还要设计一种结合哈希值和字符串比较的算法 来确保找到字符串的匹配位置。
Solution
Q1: Time Complexity of Algorithm
Algorithm iterates over all possible starting positions in the string to check if the substring of starting at position matches the pattern . For each starting position, the function eq(s + i, p)
is called, which has a time complexity of .
Thus, the total time complexity of Algorithm is:
Q2: Computing
To compute in time, we can use the rolling hash technique:
Explanation:
- We remove the contribution of from .
- We multiply the result by to shift all values left.
- We add the contribution of the new character .
- We take the modulo to keep the hash value in the correct range.
This computation can be done in time as all operations (subtraction, multiplication, addition, and modulo) are assumed to take constant time.
Q3: Algorithm
Algorithm :
- Precompute .
- Precompute and check if it matches . If it matches, return 0.
- For to :
- Compute from using the formula derived in Q2.
- If matches , return .
The time complexity of is since we are computing the hash values in constant time for each position and there are positions.
Condition when does not give the correct solution: The algorithm only checks for hash matches. In the rare case where different strings have the same hash value (hash collision), the algorithm might mistakenly report a false match.
Q4: Algorithm
Algorithm :
- Precompute .
- For to :
- Compute .
- If , then check
eq(s + i, p)
. Ifeq(s + i, p) == 1
, return .
Time Complexity:
- Best Case: if the first occurrence matches.
- Average Case: If the number of hash matches (that require further checking with
eq
) is , then the average case time complexity is . - Worst Case: The worst-case complexity can be if there are many hash collisions, causing frequent calls to
eq
.
Condition for : The time complexity will be if the expected number of hash collisions is . In other words, if the hash function has good distribution and the probability of collisions is low, the algorithm runs efficiently.
Worst-case Complexity: The worst-case time complexity of algorithm is when there are many hash collisions, leading to frequent evaluations of eq
.
知识点
难点思路
此题的难点在于如何高效地计算字符串的哈希值,并利用哈希值进行匹配。在应对哈希碰撞时,我们需要进行字符串的实际比较,保证算法的正确性。
解题技巧和信息
- 哈希算法: 使用适当的哈希函数和模数 来降低哈希碰撞的概率。
- 滚动哈希: 是一种高效的技术,可以在 O(1) 时间内更新哈希值。
- 字符串比较: 当哈希值匹配时,需要使用实际的字符串比较来确认结果。
- 复杂度分析: 分析算法的平均情况和最坏情况的复杂度,以便选择合适的解决方案。
重点词汇
- Hash Function (哈希函数): A function that maps data of arbitrary size to fixed-size values.
- Collision (碰撞): When two different inputs produce the same hash output.
- Rabin-Karp Algorithm (Rabin-Karp 算法): A string matching algorithm that uses hash values for efficient searching.
- string matching 字符串匹配
- rolling hash 滚动哈希
- time complexity 时间复杂度
- worst-case scenario 最坏情况
- hash collision 哈希冲突
参考资料
- T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, 3rd Edition, Chapter 32: “String Matching”.