Surjectivity and Injectivity of Linear Transformation
线性变换满射性和单射性
Definition / 定义
Given a linear transformation defined by , where is an matrix, we analyze the properties of surjectivity and injectivity.
给定由 定义的线性变换 ,其中 是一个 矩阵,我们分析其满射性和单射性的性质。
Surjectivity / 满射性
Definition / 定义
A function is surjective (onto) if for every , there exists at least one such that .
如果对每个 ,至少存在一个 使得 ,则函数 是满射(到射)的。
Conditions for Surjectivity / 满射性的条件
- is surjective if and only if the matrix has full row rank, i.e., . 当且仅当矩阵 满行秩,即 时, 是满射的。
- This implies that has linearly independent rows. 这意味着 有 个线性无关的行。
Example / 示例
Let , which is a matrix. Since has rank 2, which is less than 3, is not surjective.
令 ,这是一个 矩阵。由于 的秩是 2,小于 3, 不是满射的。
Injectivity / 单射性
Definition / 定义
A function is injective (one-to-one) if for every , implies .
如果对每个 , 蕴含 ,则函数 是单射的。
Conditions for Injectivity / 单射性的条件
- is injective if and only if the matrix has full column rank, i.e., . 当且仅当矩阵 满列秩,即 时, 是单射的。
- This implies that has linearly independent columns. 这意味着 有 个线性无关的列。
Example / 示例
Let , which is a matrix. Since has rank 1, which is less than 2, is not injective.
令 ,这是一个 矩阵。由于 的秩是 1,小于 2, 不是单射的。
Combined Properties / 组合性质
Bijectivity / 双射性
A function is bijective (both injective and surjective) if is a square matrix (i.e., ) and .
如果 是一个方阵(即 )且 ,则函数 是双射的。
Example / 示例
Let , which is a identity matrix. Since has rank 2 and is a square matrix, is bijective.
令 ,这是一个 单位矩阵。由于 的秩是 2 且是一个方阵, 是双射的。