Surjectivity and Injectivity of Linear Transformation

线性变换满射性和单射性

Definition / 定义

Given a linear transformation defined by , where is an matrix, we analyze the properties of surjectivity and injectivity.

给定由 定义的线性变换 ,其中 是一个 矩阵,我们分析其满射性和单射性的性质。

Surjectivity / 满射性

Definition / 定义

A function is surjective (onto) if for every , there exists at least one such that .

如果对每个 ,至少存在一个 使得 ,则函数 是满射(到射)的。

Conditions for Surjectivity / 满射性的条件

  • is surjective if and only if the matrix has full row rank, i.e., . 当且仅当矩阵 满行秩,即 时, 是满射的。
  • This implies that has linearly independent rows. 这意味着 个线性无关的行。

Example / 示例

Let , which is a matrix. Since has rank 2, which is less than 3, is not surjective.

,这是一个 矩阵。由于 的秩是 2,小于 3, 不是满射的。

Injectivity / 单射性

Definition / 定义

A function is injective (one-to-one) if for every , implies .

如果对每个 蕴含 ,则函数 是单射的。

Conditions for Injectivity / 单射性的条件

  • is injective if and only if the matrix has full column rank, i.e., . 当且仅当矩阵 满列秩,即 时, 是单射的。
  • This implies that has linearly independent columns. 这意味着 个线性无关的列。

Example / 示例

Let , which is a matrix. Since has rank 1, which is less than 2, is not injective.

,这是一个 矩阵。由于 的秩是 1,小于 2, 不是单射的。

Combined Properties / 组合性质

Bijectivity / 双射性

A function is bijective (both injective and surjective) if is a square matrix (i.e., ) and .

如果 是一个方阵(即 )且 ,则函数 是双射的。

Example / 示例

Let , which is a identity matrix. Since has rank 2 and is a square matrix, is bijective.

,这是一个 单位矩阵。由于 的秩是 2 且是一个方阵, 是双射的。