2018

Problem 1

Consider to solve the following simultaneous linear equation:

where , are a constant matrix and a vector, and is an unknown vector. Answer the following questions.

(1) An matrix is made by adding a column vector after the last column of matrix . In the case of and ,

is obtained. Let the -th column vector of the matrix be .

(i) Find the maximum number of linearly independent vectors among and .

(ii) Show that can be represented as a linear sum of and , by obtaining scalars and that satisfy .

(iii) Find the maximum number of linearly independent vectors among and .

(2) Show that the solution of the simultaneous linear equation exists when for arbitrary and .

(3) There is no solution when . When , and , obtain that minimizes the squared norm of the difference between the left hand side and the right hand side of the simultaneous linear equation, namely .

(4) When and , there exist multiple solutions for the simultaneous linear equation for arbitrary . Obtain that minimizes among them, by adopting the method of Lagrange multipliers and using the simultaneous linear equation as the constraint condition.

(5) Show that there exists a unique that satisfies the following four equations for arbitrary and .

(6) Show that both obtained in (3) and obtained in (4) are represented in the form of .


考虑解以下线性方程组:

其中 是常数矩阵和向量, 是未知向量。回答以下问题。

(1) 矩阵 是在矩阵 的最后一列后添加一个列向量得到的。对于 ,

得到。设矩阵 的第 列向量为

(i) 求 中线性无关向量的最大数量。

(ii) 证明 可以表示为 的线性组合,获得满足 的标量

(iii) 求 中线性无关向量的最大数量。

(2) 证明当 时,线性方程组的解存在,对于任意

(3) 当 时,没有解。当 时,求使左边和右边之差的平方范数 最小的

(4) 当 时,对于任意 ,线性方程组存在多个解。采用拉格朗日乘子法,使用线性方程组作为约束条件,求使 最小的

(5) 证明存在唯一的 ,它满足以下四个方程,对于任意

(6) 证明在 (3) 中得到的 和在 (4) 中得到的 都可以表示为 的形式。


Problem 2

Let be a positive constant function on with , and let and be positive real numbers with . Moreover, let be the sequence of functions on defined by

Answer the following questions.

  1. Let and be the sequences of real numbers defined by , and

Show that .

  1. Let be the function on defined by for . Noting that holds true for , show that attains its maximum at a point , and find the value of .

  2. Show that for any .

  3. Let be defined by . Show that converges to a finite positive value as . You may use the fact that .

  4. Find the value of .

  5. Show that for any .


是定义在 上的正常数函数,其满足 ,且 为正实数,满足 。此外,设 为定义在 上的函数序列,其定义为

回答下列问题。

  1. 为实数序列,其定义为 , 并且

证明

  1. 为定义在 上的函数,其定义为 对于 。注意 对于 成立,证明 在点 取得最大值,并求出 的值。

  2. 证明 对于任何 成立。

  3. 定义为 。证明 收敛于一个有限正值,当 时。你可以使用以下事实:

  4. 的值。

  5. 证明 对于任何 成立。


Problem 3

Let and be complex numbers. Consider a bag that contains two red cards and one white card. First, take one card from the bag and return it to the bag. is generated in the following manner based on the color of the card taken.

Next, take one card from the bag again and return it to the bag. is generated in the following manner based on the color of the card taken.

Here, each card is independently taken with equal probability. The initial state is and . Thus, are the values after repeating the series of the above two operations times starting from the state of and . Here, is the imaginary unit.

Answer the following questions.

  1. Show that if is odd, and that if is even. Here, and represent the real part and the imaginary part of respectively.

  2. Let be the probability of , and be the probability of . Find recurrence equations for and .

  3. Find the probabilities of , , , and respectively.

  4. Show that the expected value of is .

  5. Find the probability of .

  6. Find the expected value of .

  7. Find the expected value of .


为复数。考虑一个包含两张红牌和一张白牌的袋子。首先,从袋子中取出一张牌并将其放回袋子。 的生成方式如下,基于取出的牌的颜色。

接下来,再次从袋子中取出一张牌并将其放回袋子。 的生成方式如下,基于取出的牌的颜色。

这里,每张牌是独立且以相等概率取出的。初始状态为 。因此, 是从 状态开始重复上述两个操作 次后的值。这里, 是虚数单位。

回答下列问题。

  1. 证明 为奇数时,并且 为偶数时。这里, 分别表示 的实部和虚部。

  2. 的概率, 的概率。找出 的递推方程。

  3. , , , 和 的概率。

  4. 证明 的期望值为

  5. 的概率。

  6. 的期望值。

  7. 的期望值。