矩阵的迹 / Matrix Trace
定义 / Definition
迹(trace): 一个方阵 的迹是其对角线元素之和,用 表示 Trace: The trace of a square matrix is the sum of its diagonal elements, denoted as
其中, 表示矩阵 的第 个对角线元素
where represents the -th diagonal element of matrix
迹的性质 / Properties of Trace
- 线性性 / Linearity
若 和 是两个 矩阵,且 是一个标量,则
If and are two matrices, and is a scalar, then
- 迹的相似不变性 / Invariance under Similarity
如果 和 是相似矩阵,即存在可逆矩阵 使得 ,则
If and are similar matrices, i.e., there exists an invertible matrix such that , then
- 迹与转置矩阵 / Trace and Transpose Matrix
对于任意矩阵 ,其转置矩阵 的迹与其本身相等,即
For any matrix , the trace of its transpose is equal to its own trace, i.e.,
- 迹与矩阵乘积 / Trace and Matrix Product
对于任意 矩阵 和 ,有
For any matrices and , we have
这个性质可以推广到多个矩阵的乘积,即
This property can be generalized to the product of multiple matrices, i.e.,
- 迹与特征值 / Trace and Eigenvalues
对于一个 矩阵 ,其特征值 的和等于其迹
For an matrix , the sum of its eigenvalues equals its trace
- 迹的迹(trace of the trace)/ Trace of the Trace
若 是一个 方阵,则
If is an square matrix, then
证明 / Proofs
迹的相似不变性 / Invariance under Similarity
如果 和 是相似矩阵,即存在可逆矩阵 使得 ,则
If and are similar matrices, i.e., there exists an invertible matrix such that , then
计算 的迹
Compute the trace of
利用迹的性质
Using the property of trace
因此,相似矩阵的迹相等
Therefore, the trace of similar matrices is equal
迹与特征值的和 / Trace and Sum of Eigenvalues
设 是一个 方阵, 是 的特征值
Let be an square matrix, and be the eigenvalues of
根据特征多项式 ,我们知道 的特征值是 的特征多项式的根
According to the characteristic polynomial , we know that the eigenvalues of are the roots of the characteristic polynomial of
特征多项式可以表示为
The characteristic polynomial can be written as
其中, 是 的迹,表示 的特征值之和
where is the trace of , representing the sum of the eigenvalues of
结论 / Conclusion
迹是矩阵的重要性质之一,等于对角线元素的和,也等于特征值的和
Trace is one of the important properties of a matrix, equal to the sum of the diagonal elements and the sum of the eigenvalues
Derivatives Involving Trace / 迹相关的导数
-
When differentiating the trace of the product of matrices and , with respect to , the result is the transpose of .
对 关于 求导时,结果为 的转置。
-
Differentiating the trace of the product of and with respect to results in .
对 关于 求导时,结果为 。
-
When differentiating the trace of with respect to , the result is multiplied by the sum of and its transpose.
对 关于 求导时,结果为 乘以 和其转置之和。
Additional Notes / 额外说明
- The trace of a matrix is invariant under cyclic permutations, which can often simplify expressions and calculations. For example, in certain optimization problems, the cyclic property can be used to manipulate the objective function.
- 矩阵的迹在循环置换下不变,这通常可以简化表达式和计算。例如,在某些优化问题中,循环性质可用于操作目标函数。
This overview covers the basic concepts and properties of matrix trace and its derivatives, which are essential tools in various fields such as machine learning, statistics, and applied mathematics. 这份概述涵盖了矩阵迹及其导数的基本概念和性质,这些是机器学习、统计学和应用数学等领域的重要工具。