泵引理 (Pumping Lemma)

定义 | Definition

泵引理是用于证明某些语言不是正则语言的重要工具。

The Pumping Lemma is an important tool used to prove that certain languages are not regular.

对于任何正则语言 ,存在一个正整数 (称为泵长度),使得对于任何字符串 ,且 ,都存在 ,满足:

For any regular language , there exists a positive integer (called the pumping length) such that for any string with , there exist , , and satisfying:

  1. 对于任意非负整数 For all non-negative integers ,

证明步骤 | Proof Steps

要证明一个语言不是正则语言,我们通常采用反证法:

To prove that a language is not regular, we typically use proof by contradiction:

  1. 假设该语言是正则的。

  2. 应用泵引理。

  3. 选择一个适当的字符串 ,其长度不小于泵长度

  4. 证明不存在满足所有泵引理条件的

  5. 得出矛盾,从而证明原假设错误。

  6. Assume the language is regular.

  7. Apply the Pumping Lemma.

  8. Choose an appropriate string with length not less than the pumping length .

  9. Prove that there do not exist , , and satisfying all conditions of the Pumping Lemma.

  10. Arrive at a contradiction, thus proving the original assumption wrong.

示例:证明 不是正则语言

Example: Proving is not regular

  1. 假设 | Assumption: 假设 是正则语言。 Assume is regular.

  2. 应用泵引理 | Apply Pumping Lemma: 存在泵长度 。 There exists a pumping length .

  3. 选择字符串 | Choose a string: 选择 ,显然 。 Choose , clearly and .

  4. 分析 | Analysis: 根据泵引理,存在 ,使得 ,且满足上述条件。 According to the Pumping Lemma, there exist , , and such that , satisfying the above conditions.

    由于 必须完全由 组成。

    Since , must consist entirely of ‘s.

  5. 矛盾 | Contradiction: 考虑 。这个字符串中 的数量大于 的数量,因此 。 Consider . This string has more ‘s than ‘s, therefore .

    这与泵引理的第 4 个条件矛盾,该条件要求对于所有

    This contradicts the 4th condition of the Pumping Lemma, which requires for all .

  6. 结论 | Conclusion: 我们得出矛盾,因此原假设错误。 不是正则语言。 We have arrived at a contradiction, thus the original assumption is wrong. is not regular.

选取泵 | Choosing the Pump

选取合适的字符串 和子串 是应用泵引理的关键步骤:

Choosing appropriate string and substring is crucial when applying the Pumping Lemma:

  1. 选取 | Choosing :

    • 的长度应不小于泵长度 ,即

    • 应该是语言中的一个字符串,即

    • 选择一个能够充分体现语言特征的 。对于 ,选择 是理想的,因为它恰好满足 数量相等的特征。

    • The length of should be not less than the pumping length , i.e., .

    • should be a string in the language, i.e., .

    • Choose an that sufficiently represents the characteristics of the language. For , choosing is ideal as it exactly meets the characteristic of equal numbers of ‘s and ‘s.

  2. 分析 | Analyzing :

    • 根据泵引理,,这限制了 的位置。

    • 分析 的可能组成,考虑所有可能的情况。

    • 在我们的例子中,由于 必须完全由 组成。这是关键点,因为泵引理要求 可以被重复任意次,而只有当 全为 时,才能导致矛盾。

    • According to the Pumping Lemma, , which restricts the position of .

    • Analyze the possible composition of , considering all possible cases.

    • In our example, since , must consist entirely of ‘s. This is crucial because the Pumping Lemma requires that can be repeated any number of times, and only when is all ‘s does this lead to a contradiction.

泵引理的严格证明 | Rigorous Proof of the Pumping Lemma

泵引理的严格证明基于有限自动机的性质:

The rigorous proof of the Pumping Lemma is based on properties of finite automata:

  1. 正则语言等价性 | Equivalence of regular languages: 每个正则语言都可以由一个确定有限自动机 (DFA) 识别。

    Every regular language can be recognized by a deterministic finite automaton (DFA).

  2. DFA 的性质 | Properties of DFA: 设 是识别语言 的 DFA,有 个状态。

    Let be a DFA recognizing language with states.

  3. 长字符串的处理 | Processing long strings: 对于任何长度大于等于 的字符串 处理 时必然会重复经过某个状态。

    For any string with length greater than or equal to , must repeat a state while processing .

  4. 分解字符串 | Decomposing the string: 我们可以将 分解为 ,其中:

    • 是从初始状态到第一次重复状态的部分。
    • 是从第一次到第二次经过重复状态的部分(非空)。
    • 是剩余部分。

    We can decompose into , where:

    • is the part from the initial state to the first occurrence of the repeated state.
    • is the part from the first to the second occurrence of the repeated state (non-empty).
    • is the remaining part.
  5. 泵的性质 | Properties of the pump:

    • ,因为最多经过 个状态后必然重复。

    • 对任意 ,因为重复状态可以循环任意次数。

    • , because a state must repeat after at most steps.

    • For any , , because the repeated state can be cycled any number of times.

  6. 泵长度 | Pumping length: 取 ,即为泵引理中的泵长度。

    Let , which is the pumping length in the Pumping Lemma.

这个证明解释了为什么对于任何正则语言,我们总能找到满足泵引理条件的 。这就是为什么我们可以在应用泵引理时假设存在这样的分解。

This proof explains why for any regular language, we can always find , , and satisfying the conditions of the Pumping Lemma. This is why we can assume such a decomposition exists when applying the Pumping Lemma.

注意事项 | Notes

  • 泵引理是一个必要条件,但不是充分条件。也就是说,有些非正则语言可能满足泵引理的所有条件。

  • 在应用泵引理时,选择合适的字符串 是关键。

  • 泵引理主要用于证明语言不是正则的,而不能用来证明语言是正则的。

  • The Pumping Lemma is a necessary condition, but not a sufficient one. That is, some non-regular languages might satisfy all conditions of the Pumping Lemma.

  • When applying the Pumping Lemma, choosing an appropriate string is crucial.

  • The Pumping Lemma is primarily used to prove languages are not regular, and cannot be used to prove languages are regular.