Myhill-Nerode 定理 | Myhill-Nerode Theorem

定义 | Definition

Myhill-Nerode 定理是自动机理论中的一个重要结果,它给出了一个语言是否是正规语言(即是否可以被确定有限自动机 DFA 识别)的判定标准。该定理通过等价类的概念描述了正规语言的结构特征。

The Myhill-Nerode theorem is a fundamental result in automata theory that provides a criterion for determining whether a language is a regular language (i.e., whether it can be recognized by a deterministic finite automaton, DFA). The theorem describes the structural characteristics of regular languages through the concept of equivalence classes.

定理陈述 | Theorem Statement

是一个定义在字母表 上的语言。以下三个条件是等价的:

Let be a language defined over an alphabet . The following three conditions are equivalent:

  1. 是正规语言。 is a regular language.
  2. 的等价类集合是有限的。具体来说,存在有限个等价类,将 中的所有字符串分类,使得对于任意两个字符串 ,如果它们属于同一等价类,则对所有的 ,有 。 The set of equivalence classes of is finite. Specifically, there are a finite number of equivalence classes that partition all strings in such that for any two strings , if they belong to the same equivalence class, then for all , .
  3. 存在一个有限状态自动机(DFA),它识别语言 。 There exists a finite state automaton (DFA) that recognizes the language .

等价类 | Equivalence Classes

对于语言 ,定义一个等价关系

For a language , define an equivalence relation :

对于任意

For any ,

这意味着 在等价类 下是等价的,当且仅当对于所有可能的字符串 要么都属于 ,要么都不属于

This means that and are equivalent under the equivalence relation if and only if for all possible strings , either both and belong to or neither of them does.

定理证明思路 | Proof Outline

从 DFA 到 等价类有限性 | From DFA to Finite Equivalence Classes

  1. 假设 是由 DFA 识别的正规语言。 Suppose is a regular language recognized by a DFA.
  2. DFA 的状态数是有限的。 The number of states in a DFA is finite.
  3. 每个状态代表一个等价类,这些等价类的数量也是有限的。 Each state represents an equivalence class, and the number of such equivalence classes is finite.

从 等价类有限性 到 DFA | From Finite Equivalence Classes to DFA

  1. 假设语言 的等价类数量有限。 Suppose the number of equivalence classes of the language is finite.
  2. 可以构造一个状态数等于等价类数量的 DFA。 A DFA can be constructed with the number of states equal to the number of equivalence classes.
  3. 这个 DFA 通过状态转移来区分不同的等价类,从而识别语言 。 This DFA transitions between states to distinguish different equivalence classes, thus recognizing the language .

示例 | Example

考虑语言

Consider the language .

构造 DFA | Constructing a DFA

  1. 状态集合 。 The set of states .

  2. 初始状态 。 The initial state .

  3. 接受状态 。 The set of accepting states .

  4. 状态转移函数 定义如下: The state transition function is defined as follows:

等价类分析 | Equivalence Class Analysis

  • 对于 ,如果 结尾,则 ;否则,
  • 分析后发现存在两个等价类:

总结 | Summary

Myhill-Nerode 定理提供了一个判定语言是否为正规语言的强大工具。通过分析语言的等价类结构,可以构造出相应的 DFA,从而验证语言的正则性。理解这一定理有助于深入理解自动机理论和正规语言的性质。

The Myhill-Nerode theorem provides a powerful tool for determining whether a language is regular. By analyzing the equivalence class structure of a language, one can construct the corresponding DFA, thereby verifying the regularity of the language. Understanding this theorem helps in gaining deeper insights into automata theory and the properties of regular languages.