马尔科夫链 | Markov Chain

定义 | Definition

马尔科夫链是一种随机过程,其未来状态只依赖于当前状态,而与过去状态无关 A Markov chain is a stochastic process where the future state depends only on the present state and not on the sequence of events that preceded it.

基本概念 | Basic Concepts

  1. 状态空间 | State Space 状态空间是所有可能状态的集合 The state space is the set of all possible states.

  2. 转移概率 | Transition Probability 转移概率表示从一个状态转移到另一个状态的概率,记作 Transition probability is the probability of transitioning from one state to another, denoted as .

  3. 初始分布 | Initial Distribution 初始分布是系统在初始时刻的状态分布 The initial distribution is the distribution of states at the initial time.

性质 | Properties

  1. 齐次性 | Homogeneity 如果转移概率与时间无关,即 ,则称为齐次马尔科夫链 If the transition probability is independent of time, i.e., , it is called a homogeneous Markov chain.

  2. 稳态分布 | Steady-State Distribution 当转移矩阵 满足 时, 称为稳态分布 When the transition matrix satisfies , is called the steady-state distribution.

  3. 吸收状态 | Absorbing State 如果状态 一旦进入就无法离开,则称 为吸收状态 If a state cannot be left once entered, it is called an absorbing state.

计算方法 | Calculation Techniques

  1. 转移矩阵 | Transition Matrix 转移矩阵 是一个矩阵,其中 The transition matrix is a matrix where .

  2. 稳态分布的求解 | Finding the Steady-State Distribution 通过解方程 来求解稳态分布 The steady-state distribution can be found by solving the equations and .

  3. 贝叶斯更新 | Bayesian Update 在贝叶斯框架下,使用先验分布和似然函数来更新后验分布。 In the Bayesian framework, the posterior distribution is updated using the prior distribution and the likelihood function.

马尔科夫链与贝叶斯方法的结合 | Combination of Markov Chain and Bayesian Methods

  1. 马尔科夫链蒙特卡罗方法 (MCMC) | Markov Chain Monte Carlo (MCMC) Methods MCMC 是一种通过构造马尔科夫链来从复杂分布中抽样的技术 MCMC is a technique for sampling from complex distributions by constructing a Markov chain.

  2. 吉布斯采样 | Gibbs Sampling 吉布斯采样是一种特殊的 MCMC 方法,其中每一步只更新一个变量 Gibbs sampling is a specific MCMC method where only one variable is updated at each step.

  3. 贝叶斯推断中的应用 | Applications in Bayesian Inference MCMC 技术被广泛应用于贝叶斯推断中,用于计算后验分布 MCMC techniques are widely used in Bayesian inference to compute the posterior distribution.

注意点 | Key Points

  1. 状态转移的依赖性 | Dependency of State Transition 马尔科夫链假设未来状态只依赖于当前状态,这一点在建模时非常重要 The Markov chain assumes that the future state depends only on the current state, which is crucial in modeling.

  2. 稳态分布存在条件 | Conditions for Steady-State Distribution 并不是所有马尔科夫链都存在稳态分布,需满足一定条件 Not all Markov chains have a steady-state distribution; certain conditions must be met.

  3. MCMC 收敛性 | Convergence of MCMC 在实际应用中,需要验证 MCMC 算法的收敛性,确保结果可靠 In practical applications, the convergence of the MCMC algorithm needs to be verified to ensure reliable results.

通过掌握以上内容,可以有效理解和应用马尔科夫链及其在贝叶斯方法中的结合

By mastering the above content, one can effectively understand and apply Markov chains and their combination with Bayesian methods