二次型与正定矩阵 | Quadratic Forms and Positive Definite Matrices

定义 | Definitions

二次型 | Quadratic Form

二次型是指形式为 的表达式,其中 维列向量, 的对称矩阵

A quadratic form is an expression of the form , where is an -dimensional column vector and is an symmetric matrix

正定矩阵 | Positive Definite Matrix

正定矩阵是指对于任何非零向量 ,都有 的对称矩阵

A positive definite matrix is a symmetric matrix such that for any non-zero vector

性质 | Properties

二次型的性质 | Properties of Quadratic Forms

  1. 对称性:

  2. 如果 是正定矩阵,则 为正定二次型

  3. 可以通过特征值分解写成 ,其中 的特征值, 是线性变换后的变量

  4. Symmetry:

  5. If is a positive definite matrix, then is a positive definite quadratic form

  6. can be expressed using eigenvalue decomposition as , where are the eigenvalues of and are the transformed variables

正定矩阵的性质 | Properties of Positive Definite Matrices

  1. 所有特征值均为正

  2. 所有主子矩阵的行列式均为正

  3. 可被分解为 ,其中 为下三角矩阵

  4. All eigenvalues are positive

  5. Determinants of all leading principal minors are positive

  6. can be decomposed as , where is a lower triangular matrix

计算技巧 | Calculation Techniques

二次型化简 | Simplifying Quadratic Forms

通过正交变换 对角化,可以将二次型化简为

By orthogonal transformation that diagonalizes , the quadratic form can be simplified to

判定正定矩阵的方法 | Methods to Determine Positive Definite Matrices

  1. 确认所有特征值是否均为正
  2. 使用主子矩阵行列式进行测试
  3. 计算 是否可以进行 Cholesky 分解

4. Cholesky Decomposition Cholesky 分解

  1. Check if all eigenvalues are positive
  2. Use leading principal minors to test
  3. Determine if can be decomposed using Cholesky decomposition

坐标变换 | Coordinate Transformations

正交变换 | Orthogonal Transformation

正交变换保持二次型的形式不变,即 ,其中 是正交矩阵

An orthogonal transformation preserves the form of the quadratic form, i.e., , where is an orthogonal matrix

仿射变换 | Affine Transformation

仿射变换包括旋转、平移等操作,可以用于化简或标准化二次型

Affine transformations include operations such as rotation and translation, and can be used to simplify or standardize quadratic forms

例子 | Examples

二次型的例子 | Example of a Quadratic Form

,则二次型为

Let and , then the quadratic form is

正定矩阵的例子 | Example of a Positive Definite Matrix

考虑矩阵 ,计算特征值

特征值为 ,均为正值,因此 为正定矩阵

Consider the matrix and compute the eigenvalues

The eigenvalues are , both positive, hence is a positive definite matrix

坐标变换中的应用 | Applications in Coordinate Transformations

对角化二次型 | Diagonalizing Quadratic Forms

为了将二次型 对角化,我们寻找正交矩阵 使得 为对角矩阵 ,于是

To diagonalize the quadratic form , we find an orthogonal matrix such that is a diagonal matrix , thus

坐标变换举例 | Example of Coordinate Transformation

假设 ,则特征值为 ,对应的特征向量为 。构造正交矩阵 并进行对角化

新的二次型为

Suppose , the eigenvalues are , with corresponding eigenvectors and . Construct the orthogonal matrix and diagonalize

The new quadratic form is