矩阵理论 Matrix Theory
Cayley-Hamilton 定理 Cayley-Hamilton Theorem
定义 Definition
Cayley-Hamilton 定理: 一个 的矩阵 满足其特征多项式 ,即 代入其特征多项式得到的矩阵多项式等于零矩阵 Cayley-Hamilton Theorem: An matrix satisfies its characteristic polynomial , meaning that the matrix polynomial obtained by substituting into its characteristic polynomial equals the zero matrix
用数学语言表达:
Expressed mathematically:
特征多项式 Characteristic Polynomial
一个矩阵 的特征多项式定义为:
The characteristic polynomial of a matrix is defined as:
其中 表示行列式, 是单位矩阵, 是一个标量
where denotes the determinant, is the identity matrix, and is a scalar
证明 Proof
Cayley-Hamilton 定理的证明通常包括以下步骤:
The proof of the Cayley-Hamilton Theorem typically includes the following steps:
- 计算 的特征多项式 Calculate the characteristic polynomial of
- 通过代入 验证 Verify that by substituting
性质 Properties
- 适用于任何方阵: Cayley-Hamilton 定理对任何 矩阵都适用,无论是实矩阵还是复矩阵 Applicable to any square matrix: The Cayley-Hamilton Theorem applies to any matrix, whether real or complex
- 特征值和特征向量的关系: Cayley-Hamilton 定理表明矩阵的特征值是其特征多项式的根 Relationship between eigenvalues and eigenvectors: The Cayley-Hamilton Theorem indicates that the eigenvalues of a matrix are the roots of its characteristic polynomial
应用 Applications
- 求幂矩阵: 利用 Cayley-Hamilton 定理可以简化高次幂矩阵的计算 Computing matrix powers: The Cayley-Hamilton Theorem can simplify the computation of high powers of a matrix
- 求矩阵函数: 如矩阵的指数函数、对数函数等 Finding matrix functions: Such as the exponential function and logarithm function of a matrix
- 系统理论: 在控制系统的稳定性分析中 Systems theory: In the stability analysis of control systems
计算技巧 Calculation Techniques
- 利用幂简化: 通过 Cayley-Hamilton 定理,可以将高次幂矩阵 表示为较低次幂矩阵的线性组合,从而简化计算 Simplifying powers: By using the Cayley-Hamilton Theorem, a high power of a matrix can be expressed as a linear combination of lower powers of the matrix, thus simplifying the calculation
- 求解线性微分方程组: 在求解常系数线性微分方程组时,可以利用 Cayley-Hamilton 定理将问题转化为代数问题 Solving linear differential equations: When solving constant coefficient linear differential equations, the Cayley-Hamilton Theorem can be used to transform the problem into an algebraic one
易混淆点 Easily Confused Points
- 特征多项式与最小多项式的区别: 特征多项式是矩阵的特征值的多项式,最小多项式是满足矩阵等式 的最低次多项式 Difference between characteristic polynomial and minimal polynomial: The characteristic polynomial is the polynomial of the eigenvalues of the matrix, while the minimal polynomial is the lowest-degree polynomial that satisfies the matrix equation
- 矩阵与其特征值: Cayley-Hamilton 定理表明矩阵的特征多项式应用于矩阵本身等于零矩阵,但不意味着矩阵本身为零 Matrix and its eigenvalues: The Cayley-Hamilton Theorem indicates that the characteristic polynomial of a matrix, when applied to the matrix itself, equals the zero matrix, but this does not mean the matrix itself is zero
示例 Examples
示例 1: 计算矩阵的特征多项式并验证 Cayley-Hamilton 定理
Example 1: Calculate the characteristic polynomial of a matrix and verify the Cayley-Hamilton Theorem
设 为一个 矩阵:
Let be a matrix:
- 计算特征多项式: Calculate the characteristic polynomial:
- 验证 : Verify :
计算 :
Calculate :
然后:
Then:
这验证了 Cayley-Hamilton 定理
This verifies the Cayley-Hamilton Theorem
示例 2: 利用 Cayley-Hamilton 定理计算高次幂矩阵
Example 2: Using the Cayley-Hamilton Theorem to compute higher powers of a matrix
对于矩阵 :
For the matrix :
特征多项式为:
The characteristic polynomial is:
根据 Cayley-Hamilton 定理:
According to the Cayley-Hamilton Theorem:
因此可以简化 的计算:
Thus, the computation of can be simplified:
3x3 矩阵的 Cayley-Hamilton 定理 Cayley-Hamilton Theorem for a 3x3 Matrix
对于一个 矩阵 :
For a matrix :
其特征多项式可以表示为:
Its characteristic polynomial can be expressed as:
其中:
Where:
-
表示矩阵 的迹,即对角线上元素的和:
denotes the trace of the matrix , which is the sum of the diagonal elements:
$
$
- 矩阵 的所有主子式之和 The sum of the principal minors of matrix
例如,对于矩阵 :
For example, for the matrix :
其所有主子式的行列式之和为:
The sum of the determinants of all its principal minors is:
应用 Cayley-Hamilton 定理,将特征多项式 应用于矩阵 ,得到:
Applying the Cayley-Hamilton Theorem, the characteristic polynomial is applied to the matrix to obtain: