Jordan 标准型 Jordan Canonical Form
定义 Definition
Jordan 标准型 是一种矩阵分解形式,每个方阵都可以表示为一个对角矩阵被若干 Jordan 块取代后的形式。这种形式使得处理矩阵的幂和矩阵函数更加简单。
A Jordan canonical form is a type of matrix decomposition where any square matrix can be represented in a form that replaces the diagonal matrix with several Jordan blocks. This form simplifies the handling of matrix powers and matrix functions.
Jordan 块 Jordan Block
一个 的 Jordan 块 是一个以下形式的矩阵:
An Jordan block is a matrix of the following form:
其中, 是特征值。
where is an eigenvalue.
性质 Properties
-
特征值 Eigenvalues:Jordan 标准型的对角线元素都是原矩阵的特征值。
The diagonal elements of the Jordan canonical form are the eigenvalues of the original matrix.
-
相似矩阵 Similarity:每个矩阵 都与它的 Jordan 标准型 相似,即存在可逆矩阵 使得 。
Every matrix is similar to its Jordan canonical form , meaning there exists an invertible matrix such that .
-
唯一性 Uniqueness:Jordan 标准型在相似矩阵的意义上是唯一的。
The Jordan canonical form is unique up to similarity transformations.
-
块对角形式 Block Diagonal Form:Jordan 标准型由若干 Jordan 块构成,其大小和数量由矩阵 的特征值和特征向量决定。
The Jordan canonical form is composed of several Jordan blocks, the size and number of which are determined by the eigenvalues and eigenvectors of the matrix .
证明 Proof
-
特征值分解 Eigenvalue Decomposition:首先,对矩阵 进行特征值分解,找出所有特征值和对应的特征向量。
First, perform eigenvalue decomposition on the matrix to find all eigenvalues and their corresponding eigenvectors.
-
构建 Jordan 块 Construct Jordan Blocks:根据特征值和特征向量,构建对应的 Jordan 块。对于每个特征值 ,若其代数重数为 ,几何重数为 ,则需要构造 个大小大于 的 Jordan 块。
Construct the corresponding Jordan blocks based on the eigenvalues and eigenvectors. For each eigenvalue , if its algebraic multiplicity is and its geometric multiplicity is , construct Jordan blocks of size greater than 1.
代数重数 (Algebraic Multiplicity): 特征值在特征多项式中作为根出现的次数。
The number of times a eigenvalue appears as a root of the characteristic polynomial.几何重数 (Geometric Multiplicity): 与特征值相关的线性独立特征向量的个数,即零空间的维数。
The number of linearly independent eigenvectors associated with an eigenvalue, equivalent to the dimension of the null space. -
构造变换矩阵 Construct the Transformation Matrix:构造变换矩阵 ,其列向量由特征向量和广义特征向量组成。
Construct the transformation matrix , whose column vectors consist of the eigenvectors and generalized eigenvectors.
-
验证 Verification:验证 是否为 Jordan 标准型。若是,则 。
Verify that is in Jordan canonical form. If so, then .
例子 Example
设 为以下矩阵:
Let be the following matrix:
其 Jordan 标准型为:
Its Jordan canonical form is: