线性代数量的几何意义 | Geometric Meaning of Linear Algebra Quantities
向量的投影 | Projection of Vectors
向量在另一向量上的投影 | Projection of a Vector onto Another Vector
设有两个向量 和 , 在 上的投影为:
其中 表示向量的点积。
The projection of vector onto vector is given by:
where denotes the dot product of the vectors.
向量在某个平面上的投影 | Projection of a Vector onto a Plane
设 是平面法向量, 在平面上的投影 为:
Let be the normal vector to the plane. The projection of vector onto the plane, denoted by , is:
点线面之间的距离 | Distances Between Points, Lines, and Planes
点到直线的距离 | Distance from a Point to a Line
点 到直线 的距离为:
The distance from point to the line is:
点到平面的距离 | Distance from a Point to a Plane
点 到平面 的距离为:
The distance from point to the plane is:
两直线之间的距离 | Distance Between Two Skew Lines
对于不相交的直线 和 ,它们之间的距离为:
For two skew lines and , the distance between them is:
面积与体积 | Area and Volume
三角形的面积 | Area of a Triangle
给定三角形的顶点 , , ,三角形的面积 为:
其中, 和 分别是 到 和 到 的向量。
Given the vertices , , and of a triangle, the area is:
where and are vectors from to and to , respectively.
四面体的体积 | Volume of a Tetrahedron
给定四面体的四个顶点 , , , ,体积 为:
其中,, , 是从 出发到 , 和 的向量。
Given the vertices , , , and of a tetrahedron, the volume is:
where , , and are vectors from to , , and , respectively.
线性变换的几何意义 | Geometric Meaning of Linear Transformations
线性变换对面积的影响 | Effect of Linear Transformation on Area
对于线性变换 ,如果 映射平面上三角形的三个顶点 ,则变换后三角形的面积 为原面积 的 倍:
For a linear transformation , if maps the three vertices of a triangle in the plane, the area of the transformed triangle is times the original area :
线性变换对体积的影响 | Effect of Linear Transformation on Volume
对于线性变换 ,如果
映射三维空间中四面体的四个顶点 ,则变换后四面体的体积 为原体积 的 倍:
For a linear transformation , if maps the four vertices of a tetrahedron in three-dimensional space, the volume of the transformed tetrahedron is times the original volume :