线性代数量的几何意义 | Geometric Meaning of Linear Algebra Quantities

向量的投影 | Projection of Vectors

向量在另一向量上的投影 | Projection of a Vector onto Another Vector

设有两个向量 上的投影为:

其中 表示向量的点积。

The projection of vector onto vector is given by:

where denotes the dot product of the vectors.

向量在某个平面上的投影 | Projection of a Vector onto a Plane

是平面法向量, 在平面上的投影 为:

Let be the normal vector to the plane. The projection of vector onto the plane, denoted by , is:

点线面之间的距离 | Distances Between Points, Lines, and Planes

点到直线的距离 | Distance from a Point to a Line

到直线 的距离为:

The distance from point to the line is:

点到平面的距离 | Distance from a Point to a Plane

到平面 的距离为:

The distance from point to the plane is:

两直线之间的距离 | Distance Between Two Skew Lines

对于不相交的直线 ,它们之间的距离为:

For two skew lines and , the distance between them is:

面积与体积 | Area and Volume

三角形的面积 | Area of a Triangle

给定三角形的顶点 , , ,三角形的面积 为:

其中, 分别是 的向量。

Given the vertices , , and of a triangle, the area is:

where and are vectors from to and to , respectively.

四面体的体积 | Volume of a Tetrahedron

给定四面体的四个顶点 , , , ,体积 为:

其中,, , 是从 出发到 , 的向量。

Given the vertices , , , and of a tetrahedron, the volume is:

where , , and are vectors from to , , and , respectively.

线性变换的几何意义 | Geometric Meaning of Linear Transformations

线性变换对面积的影响 | Effect of Linear Transformation on Area

对于线性变换 ,如果 映射平面上三角形的三个顶点 ,则变换后三角形的面积 为原面积 倍:

For a linear transformation , if maps the three vertices of a triangle in the plane, the area of the transformed triangle is times the original area :

线性变换对体积的影响 | Effect of Linear Transformation on Volume

对于线性变换 ,如果

映射三维空间中四面体的四个顶点 ,则变换后四面体的体积 为原体积 倍:

For a linear transformation , if maps the four vertices of a tetrahedron in three-dimensional space, the volume of the transformed tetrahedron is times the original volume :