一阶常微分方程 (First-Order Ordinary Differential Equations)

定义 (Definition)

一阶常微分方程是只包含一个自变量及其一阶导数的方程。

A first-order ordinary differential equation is an equation that contains only one independent variable and its first derivative.

一般形式 (General form):

或 (or)

其中 是未知函数, 是自变量。

Where is the unknown function and is the independent variable.

主要类型 (Main Types)

1. 可分离变量方程 (Separable Equations)

定义 (Definition):

可以将方程改写成 形式的方程。

Equations that can be rewritten in the form .

解法 (Solution method):

  1. 分离变量 Separate the variables
  2. 两边积分 Integrate both sides
  3. 解出 Solve for

例子 (Example):

解 (Solution):

2. 线性方程 (Linear Equations)

定义 (Definition):

形如 的方程。

Equations of the form .

解法 (Solution method):

  1. 求积分因子 Find the integrating factor
  2. 两边乘以积分因子 Multiply both sides by the integrating factor
  3. 整理并积分 Simplify and integrate

详细步骤 (Detailed steps):

  1. 将方程改写成 Rewrite the equation as
  1. 左边为 The left side becomes
  1. 解出 Solve for

例子 (Example):

解 (Solution):

积分因子 (Integrating factor):

3. 伯努利方程 (Bernoulli Equations)

定义 (Definition):

形如 的方程,其中

Equations of the form , where .

解法 (Solution method):

  1. ,将方程转化为线性方程 Let , transform the equation into a linear equation
  2. 解转化后的线性方程 Solve the resulting linear equation
  3. 代回 得到原方程的解 Substitute back to get the solution of the original equation

例子 (Example):

解 (Solution):

令 (Let) , , 则 (Then) ,

这是一个线性方程,可以用上面的方法解决。

This is a linear equation that can be solved using the method above.

4. 精确方程 (Exact Equations)

定义 (Definition):

形如 的方程,其中

Equations of the form , where .

解法 (Solution method):

  1. 验证方程是否为精确方程 Verify if the equation is exact
  2. 找到函数 使得 Find a function such that and
  3. 解方程 Solve the equation

例子 (Example):

解 (Solution):

验证 (Verify):

因此 (Therefore), ,

最终解 (Final solution):

注意事项 (Important notes):

  • 识别方程类型是解题的关键第一步 Identifying the equation type is the crucial first step in solving
  • 有些方程可能需要先进行变量替换或其他转化才能归类 Some equations may require variable substitution or other transformations before classification
  • 在考试中,熟练应用这些方法可以大大提高解题效率 In exams, proficiency in applying these methods can greatly improve solving efficiency
  • 解的验证很重要,可以通过将解代入原方程来检查 Solution verification is important, which can be done by substituting the solution back into the original equation