复变函数 Complex Functions

指数形式 Exponential Form

定义 Definition

复数 可以表示为指数形式:

A complex number can be expressed in exponential form:

其中 是模, 是辐角

where r} is the modulus, and \theta$ is the argument

复数的模和辐角 Modulus and Argument of a Complex Number

  1. 计算方法: Modulus calculation:
  1. 辐角 计算方法: Argument calculation:

欧拉公式 Euler’s Formula

欧拉公式:

Euler’s formula:

利用欧拉公式,复数 可以写成:

Using Euler’s formula, a complex number can be written as:

三角函数和 形式的转化 Conversion between Trigonometric and Forms

复数 可以转化为 形式:

A complex number can be converted to form:

因此:

Therefore:

复数的实部和虚部 Real and Imaginary Parts of a Complex Number

从指数形式 中,实部和虚部的计算方法:

From the exponential form , the real and imaginary parts can be calculated as follows:

复数乘法 Multiplication of Complex Numbers

复数 相乘:

Multiplication of complex numbers and :

复数除法 Division of Complex Numbers

复数 相除:

Division of complex numbers and :

复数的幂 Powers of Complex Numbers

复数 次幂:

The -th power of a complex number :

复数的根 Roots of Complex Numbers

复数 次方根:

The -th root of a complex number :

其中 $k = 0, 1, 2, \ldots, n-1

where $k = 0, 1, 2, \ldots, n-1

复数的共轭 Conjugate of a Complex Number

复数 的共轭 是:

The conjugate of a complex number is:

共轭性质 Properties of Conjugate

  1. 共轭的模不变: The modulus of the conjugate remains the same:
  1. 共轭的辐角取反: The argument of the conjugate is negated:
  1. 共轭运算的可逆性: Conjugation is an involution:
  1. 加法中的共轭: Conjugate in addition:
  1. 乘法中的共轭: Conjugate in multiplication:
  1. 商的共轭: Conjugate of a quotient:

共轭的应用 Applications of Conjugate

  1. 计算复数的模: Calculate the modulus of a complex number:
  1. 求复数的实部和虚部: Find the real and imaginary parts of a complex number:

常见问题及注意事项 Common Issues and Tips

  1. 计算辐角时,注意区分象限,使用 的正确象限 When calculating the argument, be careful to distinguish the quadrant and use the correct quadrant for

  2. 辐角范围通常取 The argument range is usually taken as or

  3. 复数的指数形式运算在处理乘法、除法和求幂时尤其方便 The exponential form of complex numbers is especially convenient for multiplication, division, and exponentiation

复数的根和单位根 Roots and Roots of Unity

复数 次方根是使 的所有复数。

The -th roots of unity are all complex numbers such that .

这些根可以表示为:

These roots can be expressed as:

单位根的性质 Properties of Roots of Unity

  1. 单位根的和为零: The sum of the -th roots of unity is zero:
  1. 单位根是等间隔分布在单位圆上的点: The roots of unity are equally spaced points on the unit circle in the complex plane.

  2. 单位根满足 : Each root of unity satisfies .

单位根的应用 Applications of Roots of Unity

单位根在傅里叶变换和数值分析中有广泛应用。

Roots of unity have wide applications in Fourier transforms and numerical analysis.