复变函数 Complex Functions
指数形式 Exponential Form
定义 Definition
复数 可以表示为指数形式:
A complex number can be expressed in exponential form:
其中 是模, 是辐角
where r} is the modulus, and \theta$ is the argument
复数的模和辐角 Modulus and Argument of a Complex Number
- 模 计算方法: Modulus calculation:
- 辐角 计算方法: Argument calculation:
欧拉公式 Euler’s Formula
欧拉公式:
Euler’s formula:
利用欧拉公式,复数 可以写成:
Using Euler’s formula, a complex number can be written as:
三角函数和 形式的转化 Conversion between Trigonometric and Forms
复数 可以转化为 形式:
A complex number can be converted to form:
因此:
Therefore:
复数的实部和虚部 Real and Imaginary Parts of a Complex Number
从指数形式 中,实部和虚部的计算方法:
From the exponential form , the real and imaginary parts can be calculated as follows:
复数乘法 Multiplication of Complex Numbers
复数 和 相乘:
Multiplication of complex numbers and :
复数除法 Division of Complex Numbers
复数 和 相除:
Division of complex numbers and :
复数的幂 Powers of Complex Numbers
复数 的 次幂:
The -th power of a complex number :
复数的根 Roots of Complex Numbers
复数 的 次方根:
The -th root of a complex number :
其中 $k = 0, 1, 2, \ldots, n-1
where $k = 0, 1, 2, \ldots, n-1
复数的共轭 Conjugate of a Complex Number
复数 的共轭 是:
The conjugate of a complex number is:
共轭性质 Properties of Conjugate
- 共轭的模不变: The modulus of the conjugate remains the same:
- 共轭的辐角取反: The argument of the conjugate is negated:
- 共轭运算的可逆性: Conjugation is an involution:
- 加法中的共轭: Conjugate in addition:
- 乘法中的共轭: Conjugate in multiplication:
- 商的共轭: Conjugate of a quotient:
共轭的应用 Applications of Conjugate
- 计算复数的模: Calculate the modulus of a complex number:
- 求复数的实部和虚部: Find the real and imaginary parts of a complex number:
常见问题及注意事项 Common Issues and Tips
-
计算辐角时,注意区分象限,使用 的正确象限 When calculating the argument, be careful to distinguish the quadrant and use the correct quadrant for
-
辐角范围通常取 或 The argument range is usually taken as or
-
复数的指数形式运算在处理乘法、除法和求幂时尤其方便 The exponential form of complex numbers is especially convenient for multiplication, division, and exponentiation
复数的根和单位根 Roots and Roots of Unity
复数 的 次方根是使 的所有复数。
The -th roots of unity are all complex numbers such that .
这些根可以表示为:
These roots can be expressed as:
单位根的性质 Properties of Roots of Unity
- 单位根的和为零: The sum of the -th roots of unity is zero:
-
单位根是等间隔分布在单位圆上的点: The roots of unity are equally spaced points on the unit circle in the complex plane.
-
单位根满足 : Each root of unity satisfies .
单位根的应用 Applications of Roots of Unity
单位根在傅里叶变换和数值分析中有广泛应用。
Roots of unity have wide applications in Fourier transforms and numerical analysis.