多元积分 Multivariable Integral
概念与定义 Concepts and Definitions
二重积分 Double Integral
对于一个定义在闭区域 上的连续函数 ,二重积分表示为:
其中 表示微小区域元。二重积分可以看作是在区域 上对函数 进行累积求和
For a continuous function defined over a closed region , the double integral is denoted as:
where represents a small area element. The double integral can be considered as the accumulated sum of the function over the region
三重积分 Triple Integral
对于一个定义在闭区域 上的连续函数 ,三重积分表示为:
其中 表示微小体积元。三重积分可以看作是在体积 上对函数 进行累积求和
For a continuous function defined over a closed region , the triple integral is denoted as:
where represents a small volume element. The triple integral can be considered as the accumulated sum of the function over the volume
性质与定理 Properties and Theorems
迭代积分 Iterated Integrals
二重积分可以通过迭代积分来计算。假设区域 由 轴上的 到 和 轴上的 到 界定,则二重积分可以表示为:
或者
The double integral can be computed using iterated integrals. Suppose the region is bounded by to on the -axis and to on the -axis, then the double integral can be expressed as:
or
同理,三重积分可以表示为:
Similarly, the triple integral can be expressed as:
变量替换法 Change of Variables
Jacobi 行列式 Jacobi Determinant
在多元积分中,当进行变量替换时,Jacobi 行列式(Jacobian Determinant)是非常重要的工具。设有一组变量 和 ,变量之间的关系为:
Jacobi 行列式定义为以下偏导数行列式:
In multiple integrals, when performing variable substitution, the Jacobi determinant (Jacobian Determinant) is a crucial tool. Given a set of variables and , with the relationships:
The Jacobi determinant is defined as the determinant of the following partial derivatives:
Jacobi 行列式在多元积分中的应用 Applications of the Jacobi Determinant in Multiple Integrals
在进行变量替换时,积分区域和被积函数都会随之改变。设原积分变量为 ,替换后的变量为 ,原积分区域为 ,替换后的积分区域为 。则有以下关系:
其中 表示 Jacobi 行列式的绝对值。对于多重积分,我们有:
When performing variable substitution, both the integration region and the integrand change accordingly. Let the original integration variables be and the substituted variables be . The original integration region is and the substituted integration region is . The relationship is given by:
where represents the absolute value of the Jacobi determinant. For multiple integrals, we have:
变量替换及其 Jacobi 行列式 Variable Substitution and Its Jacobi Determinant
极坐标 Polar Coordinates
对于二重积分,如果积分区域 是圆形或部分圆形,可以将直角坐标系 换成极坐标系 ,转换关系为:
Jacobi 行列式为:
二重积分表示为:
For double integrals, if the integration region is circular or partially circular, Cartesian coordinates can be changed to polar coordinates . The transformation relations are:
The Jacobi determinant is:
The double integral is expressed as:
柱坐标 Cylindrical Coordinates
对于三重积分,如果积分区域 是圆柱形,可以将直角坐标系 换成柱坐标系 ,转换关系为:
Jacobi 行列式为:
三重积分表示为:
For triple integrals, if the integration region is cylindrical, Cartesian coordinates can be changed to cylindrical coordinates . The transformation relations are:
The Jacobi determinant is:
The triple integral is expressed as:
球坐标 Spherical Coordinates
对于三重积分,如果积分区域 是球形,可以将直角坐标系 换成球坐标系 ,转换关系为:
Jacobi 行列式为:
三重积分表示为:
For triple integrals, if the integration region is spherical, Cartesian coordinates can be changed to spherical coordinates . The transformation relations are:
The Jacobi determinant is:
The triple integral is expressed as:
计算技巧 Calculation Techniques
判断积分区域 Determining the Integration Region
二重积分区域 Double Integral Region
常见的二重积分区域有矩形区域和一般区域。对于一般区域,可以根据边界曲线确定积分区域:
此时,二重积分表示为:
Common double integral regions include rectangular regions and general regions. For a general region, the integration region can be determined by boundary curves:
At this time, the double integral is expressed as:
三重积分区域 Triple Integral Region
常见的三重积分区域有矩形区域和一般区域。对于一般区域,可以根据边界曲面确定积分区域:
此时,三重积分表示为:
Common triple integral regions include rectangular regions and general regions. For a general region, the integration region can be determined by boundary surfaces:
At this time, the triple integral is expressed as:
常见积分区域换元技巧 Common Transformation Techniques for Integration Regions
圆区域 Circular Region
当积分区域为圆或部分圆时,使用极坐标变换,将积分区域从 变换到 ,并使用
When the integration region is a circle or part of a circle, use the polar coordinate transformation to change the integration region from to , and use
柱形区域 Cylindrical Region
当积分区域为柱形时,使用柱坐标变换,将积分区域从 变换到 ,并使用
When the integration region is cylindrical, use the cylindrical coordinate transformation to change the integration region from to , and use
球形区域 Spherical Region
当积分区域为球形时,使用球坐标变换,将积分区域从 变换到 ,并使用
When the integration region is spherical, use the spherical coordinate transformation to change the integration region from to , and use
例题 Examples
例 1 Example 1
计算二重积分 ,其中区域 是单位圆
Calculate the double integral where the region is the unit circle
解:
使用极坐标变换:
积分区域 变为
Solution:
Using the polar coordinate transformation:
The integration region becomes
例 2 Example 2
计算三重积分 ,其中区域 是单位球
Calculate the triple integral where the region is the unit sphere
解:
使用球坐标变换:
积分区域 变为
Solution:
Using the spherical coordinate transformation:
The integration region becomes