多元微分 Multivariable Differential

概念与定义 Concepts and Definitions

二元函数 Bivariate Function

一个二元函数是指有两个自变量的函数,形式为 。自变量 分别属于实数集 的子集,函数值 属于实数集

A bivariate function refers to a function with two variables, in the form of . The variables and belong to subsets of the real numbers , and the function value belongs to the real numbers

极限 Limits

为定义在区域 上的函数。如果存在实数 使得当 充分接近点 时, 的值无限接近 ,则称 处的极限,记作:

Let be a function defined on a region . If there exists a real number such that as approaches the point , the value of approaches , then is called the limit of at , denoted as:

连续性 Continuity

在点 处有定义,且满足以下条件:

则称 在点 处连续

If is defined at the point and satisfies the following condition:

then is continuous at the point

偏导数 Partial Derivatives

二元函数 在点 处对 的偏导数定义为:

的偏导数定义为:

The partial derivative of a bivariate function at the point with respect to is defined as:

The partial derivative with respect to is defined as:

性质与定理 Properties and Theorems

可微性 Differentiability

在点 处连续,并且存在常数 使得:

则称 在点 处可微

If is continuous at the point , and there exist constants and such that:

then is differentiable at the point

混合偏导数 Mixed Partial Derivatives

若函数 的二阶偏导数连续,即 ,则称 的混合偏导数连续

If the second-order partial derivatives of the function are continuous, i.e., , then the mixed partial derivatives of are continuous

泰勒展开 Taylor Expansion

在点 处有二阶连续偏导数,则可以展开为泰勒级数形式:

If has second-order continuous partial derivatives at the point , it can be expanded in the form of a Taylor series:

计算技巧 Calculation Techniques

链式法则 Chain Rule

如果 ,且 ,则 的导数为:

If , and , then the derivative of with respect to is:

方向导数 Directional Derivative

在方向 上,函数 在点 处的方向导数定义为:

In the direction , the directional derivative of the function at the point is defined as:

梯度 Gradient

函数 在点 处的梯度为:

The gradient of the function at the point is:

拉普拉斯算子 Laplacian

拉普拉斯算子用于描述函数的二阶导数和,定义为:

The Laplacian operator is used to describe the sum of the second-order derivatives of a function, defined as:

例题 Examples

例 1 Example 1

求函数 在点 处的梯度

Calculate the gradient of the function at the point

解:

Solution:

例 2 Example 2

计算 时的

Calculate for when and

解:

Solution: