傅里叶变换 | Fourier Transform
1. Introduction 简介
The Fourier Transform is a fundamental tool in signal processing, physics, and mathematics, used to decompose functions into their constituent frequencies.
傅里叶变换是信号处理、物理学和数学中的基本工具,用于将函数分解为其构成频率。
2. Definitions 定义
2.1 Continuous Fourier Transform 连续傅里叶变换
Forward Transform 正变换:
Inverse Transform 逆变换:
Where 其中:
- is the original function in the time domain 是时域中的原始函数
- is the Fourier transform in the frequency domain 是频域中的傅里叶变换
- is the angular frequency (radians per second) 是角频率 (弧度/秒)
2.2 Discrete Fourier Transform (DFT) 离散傅里叶变换
For a sequence of N complex numbers , :
对于 N 个复数的序列 , :
Forward Transform 正变换:
Inverse Transform 逆变换:
3. Properties 性质
-
Linearity 线性:
\mathcal{F}{af(t) + bg(t)} = aF(\omega) + bG(\omega)
\mathcal{F}{f(t-t_0)} = e^{-i\omega t_0}F(\omega)
\mathcal{F}{e^{i\omega_0 t}f(t)} = F(\omega-\omega_0)
\mathcal{F}{f(at)} = \frac{1}{|a|}F(\frac{\omega}{a})
\mathcal{F}{f(t) * g(t)} = F(\omega)G(\omega)
\mathcal{F}{f(t)g(t)} = \frac{1}{2\pi}F(\omega) * G(\omega)
\int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{1}{2\pi}\int_{-\infty}^{\infty} |F(\omega)|^2 d\omega
## 4. Common Transform Pairs 常见变换对 1. **Delta Function δ函数**:\delta(t) \leftrightarrow 1
其中 $\delta(t)$ 是Dirac Delta function where $\delta(t)$ is the Dirac Delta function\delta(t) = \begin{cases}
\infty, & t = 0 \
0, & t \neq 0
\end{cases}
且 $\int_{-\infty}^{\infty} \delta(t)dt = 1$ 2. **Constant 常数**: $$1 \leftrightarrow 2\pi\delta(\omega)$$ 3. **Sine and Cosine 正弦和余弦**: $$\sin(\omega_0 t) \leftrightarrow \pi i[\delta(\omega+\omega_0) - \delta(\omega-\omega_0)]$$ $$\cos(\omega_0 t) \leftrightarrow \pi[\delta(\omega+\omega_0) + \delta(\omega-\omega_0)]$$ 4. **Exponential 指数函数**: $$e^{-a|t|} \leftrightarrow \frac{2a}{a^2 + \omega^2}$$ 5. **Gaussian 高斯函数**: $$e^{-at^2} \leftrightarrow \sqrt{\frac{\pi}{a}}e^{-\omega^2/(4a)}$$ 6. **Rectangle Function 矩形函数**: $$\text{rect}(t) = \begin{cases} 1, & |t| < \frac{1}{2} \\ 0, & \text{otherwise} \end{cases} \leftrightarrow \text{sinc}(\omega) = \frac{\sin(\omega/2)}{\omega/2}$$ ## 5. Applications 应用 1. **Signal Processing 信号处理**: - Filtering 滤波 - Compression 压缩 - Modulation 调制 2. **Image Processing 图像处理**: - Edge detection 边缘检测 - Image compression 图像压缩 3. **Differential Equations 微分方程**: - Solving PDEs 求解偏微分方程 4. **Quantum Mechanics 量子力学**: - Wave function analysis 波函数分析 5. **Acoustics 声学**: - Sound wave analysis 声波分析 ## 6. Computation Techniques 计算技巧 1. **Fast Fourier Transform (FFT) 快速傅里叶变换**: - Efficient algorithm for computing DFT - 计算DFT的高效算法 - Reduces complexity from $O(N^2)$ to $O(N\log N)$ - 将复杂度从 $O(N^2)$ 降低到 $O(N\log N)$ 2. **Windowing 窗函数**: - Reduce spectral leakage in DFT - 减少DFT中的频谱泄漏 - Common windows: Hamming, Hann, Blackman - 常见窗函数: 汉明窗、汉宁窗、布莱克曼窗 3. **Zero-padding 零填充**: - Increase frequency resolution in DFT - 增加DFT的频率分辨率 ## 7. Common Pitfalls 常见陷阱 1. Aliasing due to undersampling 欠采样导致的混叠 2. Spectral leakage in finite-length signals 有限长信号中的频谱泄漏 3. Neglecting the scaling factor in inverse DFT 忽略逆DFT中的缩放因子 4. Misinterpreting phase information 错误解释相位信息 ## 8. Derivations and Proofs 推导与证明 ### 8.1 Derivation of the Fourier Transform 傅里叶变换的推导 Starting from the Fourier series for a periodic function with period $T$: 从周期为 $T$ 的周期函数的傅里叶级数开始: $$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{in\omega_0 t}$$ Where $\omega_0 = \frac{2\pi}{T}$ and $c_n = \frac{1}{T}\int_{-T/2}^{T/2} f(t)e^{-in\omega_0 t}dt$ As $T \to \infty$, $\omega_0 \to d\omega$ and $\frac{1}{T} \to \frac{d\omega}{2\pi}$, we get: 当 $T \to \infty$ 时,$\omega_0 \to d\omega$ 且 $\frac{1}{T} \to \frac{d\omega}{2\pi}$,我们得到: $$f(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty} (\int_{-\infty}^{\infty} f(\tau)e^{-i\omega \tau}d\tau) e^{i\omega t}d\omega$$ This gives us the Fourier transform pair: 这给出了傅里叶变换对: $$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$ $$f(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty} F(\omega)e^{i\omega t}d\omega$$ ### 8.2 Proof of Convolution Theorem 卷积定理的证明 To prove: $\mathcal{F}\{f(t) * g(t)\} = F(\omega)G(\omega)$ Let $h(t) = f(t) * g(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$ Taking the Fourier transform of $h(t)$: 对 $h(t)$ 进行傅里叶变换:\begin{align*}
H(\omega) &= \int_{-\infty}^{\infty} h(t)e^{-i\omega t}dt \
&= \int_{-\infty}^{\infty} (\int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau) e^{-i\omega t}dt \
&= \int_{-\infty}^{\infty} f(\tau) (\int_{-\infty}^{\infty} g(t-\tau)e^{-i\omega t}dt) d\tau
\end{align*}
Let $u = t-\tau$, then $dt = du$: 令 $u = t-\tau$,则 $dt = du$: $$\begin{align*} H(\omega) &= \int_{-\infty}^{\infty} f(\tau) (\int_{-\infty}^{\infty} g(u)e^{-i\omega (u+\tau)}du) d\tau \\ &= \int_{-\infty}^{\infty} f(\tau)e^{-i\omega \tau} (\int_{-\infty}^{\infty} g(u)e^{-i\omega u}du) d\tau \\ &= (\int_{-\infty}^{\infty} f(\tau)e^{-i\omega \tau}d\tau) (\int_{-\infty}^{\infty} g(u)e^{-i\omega u}du) \\ &= F(\omega)G(\omega) \end{align*}Thus, the convolution theorem is proved.
因此,卷积定理得证。
8.3 Derivation of the Uncertainty Principle 不确定性原理的推导
The uncertainty principle states that a function and its Fourier transform cannot both be highly concentrated.
不确定性原理指出,一个函数及其傅里叶变换不能同时高度集中。
Define the “spread” of and as:
定义 和 的 ” 展宽 ” 为:
Using Parseval’s theorem and the properties of Fourier transforms, we can show:
使用帕塞瓦尔定理和傅里叶变换的性质,我们可以证明:
This is the mathematical expression of the uncertainty principle.
这是不确定性原理的数学表达。
8.4 Proof of Parseval’s Theorem 帕塞瓦尔定理的证明
To prove:
Start with the inverse Fourier transform:
从逆傅里叶变换开始:
f(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty} F(\omega)e^{i\omega t}d\omega$$ Multiply both sides by $f^*(t)$ (complex conjugate of $f(t)$): 两边乘以 $f^*(t)$ ($f(t)$ 的复共轭): $$|f(t)|^2 = f(t)f^*(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty} F(\omega)f^*(t)e^{i\omega t}d\omega$$ Integrate both sides with respect to $t$: 对两边关于 $t$ 积分: $$\int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{1}{2\pi}\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(\omega)f^*(t)e^{i\omega t}d\omega dt$$ Change the order of integration (Fubini's theorem): 改变积分顺序(Fubini定理): $$\int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{1}{2\pi}\int_{-\infty}^{\infty} F(\omega) (\int_{-\infty}^{\infty} f^*(t)e^{i\omega t}dt) d\omega$$ The inner integral is the complex conjugate of $F(\omega)$: 内部积分是 $F(\omega)$ 的复共轭: $$\int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{1}{2\pi}\int_{-\infty}^{\infty} F(\omega)F^*(\omega)d\omega = \frac{1}{2\pi}\int_{-\infty}^{\infty} |F(\omega)|^2 d\omegaThus, Parseval’s theorem is proved.
因此,帕塞瓦尔定理得证。