展开 Expansions

泰勒展开 Taylor Expansion

定义 Definition

泰勒展开: 一个函数 在点 处可以表示为一个幂级数的形式,即 Taylor Expansion: A function can be represented as a power series around a point :

其中 表示函数 处的第 阶导数, 的阶乘

where denotes the -th derivative of at , and is the factorial of

麦克劳林展开 Maclaurin Expansion

麦克劳林展开: 是泰勒展开在 时的特殊情况,即 Maclaurin Expansion: A special case of the Taylor expansion where :

常见函数的泰勒展开 Taylor Expansions of Common Functions

  1. 指数函数 Exponential Function :

2. **正弦函数 Sine Function** $\sin(x)$:

\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots

3. **余弦函数 Cosine Function** $\cos(x)$:

\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots

4. **自然对数 Natural Logarithm** $\ln(1+x)$:

\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots \quad (|x| < 1)

5. **反正切函数 Arctangent Function** $\arctan(x)$:

\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots \quad (|x| \leq 1)

### 应用 Applications 1. **近似计算 Approximation**: 泰勒展开可以用来近似计算函数值,特别是当 $x$ 接近展开点时 **Approximation**: Taylor expansion can be used to approximate function values, especially when $x$ is close to the expansion point 2. **解微分方程 Solving Differential Equations**: 利用泰勒展开可以将微分方程转化为代数方程 **Solving Differential Equations**: Taylor expansion can be used to transform differential equations into algebraic equations ## 傅里叶级数 Fourier Series ### 定义 Definition **傅里叶级数**: 一个周期函数 $f(x)$ 可以表示为正弦和余弦函数的无穷级数之和,即 **Fourier Series**: A periodic function $f(x)$ can be represented as an infinite sum of sine and cosine functions:

f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{2n\pi x}{T}\right) + b_n \sin\left(\frac{2n\pi x}{T}\right)\right)

其中 $T$ 是周期,$a_0, a_n, b_n$ 是傅里叶系数 where $T$ is the period, and $a_0, a_n, b_n$ are Fourier coefficients ### 傅里叶系数 Fourier Coefficients 傅里叶系数 $a_0, a_n, b_n$ 计算如下: Fourier coefficients $a_0, a_n, b_n$ are calculated as follows:

a_0 = \frac{1}{T} \int_{0}^{T} f(x) , dx

a_n = \frac{2}{T} \int_{0}^{T} f(x) \cos\left(\frac{2n\pi x}{T}\right) , dx

b_n = \frac{2}{T} \int_{0}^{T} f(x) \sin\left(\frac{2n\pi x}{T}\right) , dx

### 应用 Applications 1. **信号处理 Signal Processing**: 傅里叶级数在信号处理中用于分析和表示周期信号 **Signal Processing**: Fourier series are used in signal processing to analyze and represent periodic signals 2. **振动分析 Vibration Analysis**: 在机械工程中用于分析振动模式 **Vibration Analysis**: Used in mechanical engineering to analyze vibration modes 3. **热传导 Heat Conduction**: 用于解决热传导问题中的温度分布 **Heat Conduction**: Used to solve temperature distribution problems in heat conduction